Spaces:
Sleeping
Sleeping
File size: 11,933 Bytes
4c1fd66 a5614b8 c9efe44 4c1fd66 022cb46 4c1fd66 022cb46 4c1fd66 a962672 4c1fd66 022cb46 4c1fd66 568fadb 4c1fd66 568fadb 4c1fd66 a962672 4c1fd66 234c0d5 4c1fd66 022cb46 4c1fd66 a962672 4c1fd66 022cb46 ceb5190 022cb46 4c1fd66 2d56324 4c1fd66 dc95541 4c1fd66 022cb46 4c1fd66 b103573 4c1fd66 b103573 4c1fd66 022cb46 4c1fd66 022cb46 4c1fd66 282bf19 4c1fd66 a4a2091 022cb46 992fbfd 2d56324 022cb46 2d56324 022cb46 4c1fd66 022cb46 4c1fd66 022cb46 4c1fd66 022cb46 4c1fd66 022cb46 444f39b c510ebb 022cb46 4c1fd66 022cb46 c510ebb 022cb46 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 |
import pandas as pd
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import torch
import torch.nn.functional as F
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from sentence_transformers import SentenceTransformer
from transformers import BertTokenizer,BertForMaskedLM
import io
import time
@st.cache(show_spinner=True,allow_output_mutation=True)
def load_sentence_model():
sentence_model = SentenceTransformer('paraphrase-distilroberta-base-v1')
return sentence_model
@st.cache(show_spinner=True,allow_output_mutation=True)
def load_model(model_name):
if model_name.startswith('bert'):
tokenizer = BertTokenizer.from_pretrained(model_name)
model = BertForMaskedLM.from_pretrained(model_name)
model.eval()
return tokenizer,model
@st.cache(show_spinner=False)
def load_data(sentence_num):
df = pd.read_csv('tsne_out.csv')
df = df.loc[lambda d: (d['sentence_num']==sentence_num)&(d['iter_num']<1000)]
return df.reset_index()
#@st.cache(show_spinner=False)
def mask_prob(model,mask_id,sentences,position,temp=1):
masked_sentences = sentences.clone()
masked_sentences[:, position] = mask_id
with torch.no_grad():
logits = model(masked_sentences)[0]
return F.log_softmax(logits[:, position] / temp, dim = -1)
#@st.cache(show_spinner=False)
def sample_words(probs,pos,sentences):
candidates = [[tokenizer.decode([candidate]),torch.exp(probs)[0,candidate].item()]
for candidate in torch.argsort(probs[0],descending=True)[:10]]
df = pd.DataFrame(data=candidates,columns=['word','prob'])
chosen_words = torch.multinomial(torch.exp(probs), num_samples=1).squeeze(dim=-1)
new_sentences = sentences.clone()
new_sentences[:, pos] = chosen_words
return new_sentences, df
def run_chains(tokenizer,model,mask_id,input_text,num_steps):
init_sent = tokenizer(input_text,return_tensors='pt')['input_ids']
seq_len = init_sent.shape[1]
sentence = init_sent.clone()
data_list = []
st.sidebar.write('Generating samples...')
st.sidebar.write('This takes ~1 min for 1000 steps with ~10 token sentences')
chain_progress = st.sidebar.progress(0)
for step_id in range(num_steps):
chain_progress.progress((step_id+1)/num_steps)
pos = torch.randint(seq_len-2,size=(1,)).item()+1
#data_list.append([step_id,' '.join([tokenizer.decode([token]) for token in sentence[0]]),pos])
data_list.append([step_id,tokenizer.decode([token for token in sentence[0]]),pos])
probs = mask_prob(model,mask_id,sentence,pos)
sentence,_ = sample_words(probs,pos,sentence)
return pd.DataFrame(data=data_list,columns=['step','sentence','next_sample_loc'])
#@st.cache(show_spinner=True,allow_output_mutation=True)
def show_tsne_panel(df, step_id):
x_tsne, y_tsne = df.x_tsne, df.y_tsne
xscale_unit = (max(x_tsne)-min(x_tsne))/10
yscale_unit = (max(y_tsne)-min(y_tsne))/10
xlims = [(min(x_tsne)//xscale_unit-1)*xscale_unit,(max(x_tsne)//xscale_unit+1)*xscale_unit]
ylims = [(min(y_tsne)//yscale_unit-1)*yscale_unit,(max(y_tsne)//yscale_unit+1)*yscale_unit]
color_list = sns.color_palette('flare',n_colors=int(len(df)*1.2))
fig = plt.figure(figsize=(5,5),dpi=200)
ax = fig.add_subplot(1,1,1)
ax.plot(x_tsne[:step_id+1],y_tsne[:step_id+1],linewidth=0.2,color='gray',zorder=1)
ax.scatter(x_tsne[:step_id+1],y_tsne[:step_id+1],s=5,color=color_list[:step_id+1],zorder=2)
ax.scatter(x_tsne[step_id:step_id+1],y_tsne[step_id:step_id+1],s=50,marker='*',color='blue',zorder=3)
ax.set_xlim(*xlims)
ax.set_ylim(*ylims)
ax.axis('off')
return fig
def run_tsne(chain):
st.sidebar.write('Running t-SNE...')
st.sidebar.write('This takes ~1 min for 1000 steps with ~10 token sentences')
chain = chain.assign(cleaned_sentence=chain.sentence.str.replace(r'\[CLS\] ', '',regex=True).str.replace(r' \[SEP\]', '',regex=True))
sentence_model = load_sentence_model()
sentence_embeddings = sentence_model.encode(chain.cleaned_sentence.to_list(), show_progress_bar=False)
tsne = TSNE(n_components = 2, n_iter=2000)
big_pca = PCA(n_components = 50)
tsne_vals = tsne.fit_transform(big_pca.fit_transform(sentence_embeddings))
tsne = pd.concat([chain, pd.DataFrame(tsne_vals, columns = ['x_tsne', 'y_tsne'],index=chain.index)], axis = 1)
return tsne
def autoplay() :
for step_id in range(st.session_state.step_id, len(st.session_state.df), 1):
x = st.empty()
with x.container():
st.markdown(show_changed_site(), unsafe_allow_html = True)
fig = show_tsne_panel(st.session_state.df, step_id)
st.session_state.prev_step_id = st.session_state.step_id
st.session_state.step_id = step_id
#plt.title(f'Step {step_id}')#: {show_changed_site()}')
cols = st.columns([1,2,1])
with cols[1]:
st.pyplot(fig)
time.sleep(.25)
x.empty()
def initialize_buttons() :
buttons = st.sidebar.empty()
button_ids = []
with buttons.container() :
row1_labels = ['+1','+10','+100','+500']
row1 = st.columns([4,5,6,6])
for col_id,col in enumerate(row1):
button_ids.append(col.button(row1_labels[col_id],key=row1_labels[col_id]))
row2_labels = ['-1','-10','-100','-500']
row2 = st.columns([4,5,6,6])
for col_id,col in enumerate(row2):
button_ids.append(col.button(row2_labels[col_id],key=row2_labels[col_id]))
show_candidates_checked = st.checkbox('Show candidates')
# Increment if any of them have been pressed
increments = np.array([1,10,100,500,-1,-10,-100,-500])
if any(button_ids) :
increment_value = increments[np.array(button_ids)][0]
st.session_state.prev_step_id = st.session_state.step_id
new_step_id = st.session_state.step_id + increment_value
st.session_state.step_id = min(len(st.session_state.df) - 1, max(0, new_step_id))
if show_candidates_checked:
st.write('Click any word to see each candidate with its probability')
show_candidates()
def show_candidates():
if 'curr_table' in st.session_state:
st.session_state.curr_table.empty()
step_id = st.session_state.step_id
sentence = df.cleaned_sentence.loc[step_id]
input_sent = tokenizer(sentence,return_tensors='pt')['input_ids']
decoded_sent = [tokenizer.decode([token]) for token in input_sent[0]]
char_nums = [len(word)+2 for word in decoded_sent]
cols = st.columns(char_nums)
with cols[0]:
st.write(decoded_sent[0])
with cols[-1]:
st.write(decoded_sent[-1])
for word_id,(col,word) in enumerate(zip(cols[1:-1],decoded_sent[1:-1])):
with col:
if st.button(word,key=f'word_{word_id}'):
probs = mask_prob(model,mask_id,input_sent,word_id+1)
_, candidates_df = sample_words(probs, word_id+1, input_sent)
st.session_state.curr_table = st.table(candidates_df)
def show_changed_site():
df = st.session_state.df
step_id = st.session_state.step_id
prev_step_id = st.session_state.prev_step_id
curr_sent = df.cleaned_sentence.loc[step_id].split(' ')
prev_sent = df.cleaned_sentence.loc[prev_step_id].split(' ')
locs = [df.next_sample_loc.to_list()[step_id-1]-1] if 'next_sample_loc' in df else (
[i for i in range(len(curr_sent)) if curr_sent[i] not in prev_sent]
)
disp_style = '"font-family:san serif; color:Black; font-size: 20px"'
prefix = f'<p style={disp_style}>Step {st.session_state.step_id}: <span style="font-weight:bold">'
disp = ' '.join([f'<span style="color:Red">{word}</span>' if i in locs else f'{word}'
for (i, word) in enumerate(curr_sent)])
suffix = '</span></p>'
return prefix + disp + suffix
def clear_df():
if 'df' in st.session_state:
del st.session_state['df']
if __name__=='__main__':
# Config
max_width = 1500
padding_top = 0
padding_right = 2
padding_bottom = 0
padding_left = 2
define_margins = f"""
<style>
.appview-container .main .block-container{{
max-width: {max_width}px;
padding-top: {padding_top}rem;
padding-right: {padding_right}rem;
padding-left: {padding_left}rem;
padding-bottom: {padding_bottom}rem;
}}
</style>
"""
hide_table_row_index = """
<style>
tbody th {display:none}
.blank {display:none}
</style>
"""
st.markdown(define_margins, unsafe_allow_html=True)
st.markdown(hide_table_row_index, unsafe_allow_html=True)
input_type = st.sidebar.radio(
label='1. Choose the input type',
on_change=clear_df,
options=('Use one of the example sentences','Use your own initial sentence')
)
# Title
st.header("Demo: Probing BERT's priors with serial reproduction chains")
# Load BERT
tokenizer,model = load_model('bert-base-uncased')
mask_id = tokenizer.encode("[MASK]")[1:-1][0]
# First step: load the dataframe containing sentences
if input_type=='Use one of the example sentences':
sentence = st.sidebar.selectbox("Select the inital sentence",
('--- Please select one from below ---',
'About 170 campers attend the camps each week.',
"Ali marpet's mother is joy rose.",
'She grew up with three brothers and ten sisters.'))
if sentence!='--- Please select one from below ---':
if sentence=='About 170 campers attend the camps each week.':
sentence_num = 6
elif sentence=='She grew up with three brothers and ten sisters.':
sentence_num = 8
elif sentence=="Ali marpet's mother is joy rose." :
sentence_num = 2
st.session_state.df = load_data(sentence_num)
st.session_state.finished_sampling = True
else:
sentence = st.sidebar.text_input('Type your own sentence here.',on_change=clear_df)
num_steps = st.sidebar.number_input(label='How many steps do you want to run?',value=500)
if st.sidebar.button('Run chains'):
chain = run_chains(tokenizer, model, mask_id, sentence, num_steps=num_steps)
st.session_state.df = run_tsne(chain)
st.session_state.finished_sampling = True
st.empty().markdown("\
Let's explore sentences from BERT's prior! \
Use the menu to the left to select a pre-generated chain, \
or start a new chain using your own initial sentence.\
" if not 'df' in st.session_state else "\
Use the slider to select a step, or watch the autoplay.\
Click 'Show candidates' to see the top proposals when each word is masked out.\
")
if 'df' in st.session_state:
df = st.session_state.df
if 'step_id' not in st.session_state:
st.session_state.prev_step_id = 0
st.session_state.step_id = 0
explore_type = st.sidebar.radio(
'2. Choose how to explore the chain',
options=['Click through steps','Autoplay']
)
if explore_type=='Autoplay':
st.empty()
st.sidebar.empty()
autoplay()
elif explore_type=='Click through steps':
initialize_buttons()
with st.container():
st.markdown(show_changed_site(), unsafe_allow_html = True)
fig = show_tsne_panel(df, st.session_state.step_id)
cols = st.columns([1,2,1])
with cols[1]:
st.pyplot(fig)
|