File size: 11,933 Bytes
4c1fd66
 
 
 
 
 
 
 
 
 
 
a5614b8
c9efe44
4c1fd66
022cb46
4c1fd66
 
 
 
022cb46
4c1fd66
 
 
 
 
 
 
a962672
4c1fd66
 
 
022cb46
4c1fd66
568fadb
4c1fd66
 
 
 
 
 
 
568fadb
4c1fd66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a962672
4c1fd66
 
 
 
234c0d5
 
4c1fd66
 
 
 
022cb46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c1fd66
 
a962672
4c1fd66
 
 
 
 
 
 
 
 
 
022cb46
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ceb5190
022cb46
 
 
 
 
 
 
 
 
4c1fd66
2d56324
 
4c1fd66
dc95541
4c1fd66
022cb46
4c1fd66
 
b103573
 
4c1fd66
b103573
4c1fd66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
022cb46
 
 
 
 
4c1fd66
 
 
022cb46
4c1fd66
 
 
 
 
282bf19
4c1fd66
a4a2091
022cb46
 
 
992fbfd
2d56324
 
 
 
022cb46
 
2d56324
022cb46
4c1fd66
022cb46
 
4c1fd66
022cb46
4c1fd66
 
022cb46
 
 
 
 
 
 
 
 
4c1fd66
 
 
022cb46
 
 
444f39b
c510ebb
022cb46
 
 
 
4c1fd66
 
022cb46
 
 
c510ebb
022cb46
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import pandas as pd
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import torch
import torch.nn.functional as F
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from sentence_transformers import SentenceTransformer
from transformers import BertTokenizer,BertForMaskedLM
import io
import time

@st.cache(show_spinner=True,allow_output_mutation=True)
def load_sentence_model():
    sentence_model = SentenceTransformer('paraphrase-distilroberta-base-v1')
    return sentence_model

@st.cache(show_spinner=True,allow_output_mutation=True)
def load_model(model_name):
    if model_name.startswith('bert'):
        tokenizer = BertTokenizer.from_pretrained(model_name)
        model = BertForMaskedLM.from_pretrained(model_name)
        model.eval()
    return tokenizer,model

@st.cache(show_spinner=False)
def load_data(sentence_num):
    df = pd.read_csv('tsne_out.csv')
    df = df.loc[lambda d: (d['sentence_num']==sentence_num)&(d['iter_num']<1000)]
    return df.reset_index()

#@st.cache(show_spinner=False)
def mask_prob(model,mask_id,sentences,position,temp=1):
    masked_sentences = sentences.clone()
    masked_sentences[:, position] = mask_id
    with torch.no_grad():
        logits = model(masked_sentences)[0]
    return F.log_softmax(logits[:, position] / temp, dim = -1)

#@st.cache(show_spinner=False)
def sample_words(probs,pos,sentences):
    candidates = [[tokenizer.decode([candidate]),torch.exp(probs)[0,candidate].item()]
                  for candidate in torch.argsort(probs[0],descending=True)[:10]]
    df = pd.DataFrame(data=candidates,columns=['word','prob'])
    chosen_words = torch.multinomial(torch.exp(probs), num_samples=1).squeeze(dim=-1)
    new_sentences = sentences.clone()
    new_sentences[:, pos] = chosen_words
    return new_sentences, df

def run_chains(tokenizer,model,mask_id,input_text,num_steps):
    init_sent = tokenizer(input_text,return_tensors='pt')['input_ids']
    seq_len = init_sent.shape[1]
    sentence = init_sent.clone()
    data_list = []
    st.sidebar.write('Generating samples...')
    st.sidebar.write('This takes ~1 min for 1000 steps with ~10 token sentences')
    chain_progress = st.sidebar.progress(0)
    for step_id in range(num_steps):
        chain_progress.progress((step_id+1)/num_steps)
        pos = torch.randint(seq_len-2,size=(1,)).item()+1
        #data_list.append([step_id,' '.join([tokenizer.decode([token]) for token in sentence[0]]),pos])
        data_list.append([step_id,tokenizer.decode([token for token in sentence[0]]),pos])
        probs = mask_prob(model,mask_id,sentence,pos)
        sentence,_ = sample_words(probs,pos,sentence)
    return pd.DataFrame(data=data_list,columns=['step','sentence','next_sample_loc'])

#@st.cache(show_spinner=True,allow_output_mutation=True)
def show_tsne_panel(df, step_id):
    x_tsne, y_tsne = df.x_tsne, df.y_tsne
    xscale_unit = (max(x_tsne)-min(x_tsne))/10
    yscale_unit = (max(y_tsne)-min(y_tsne))/10
    xlims = [(min(x_tsne)//xscale_unit-1)*xscale_unit,(max(x_tsne)//xscale_unit+1)*xscale_unit]
    ylims = [(min(y_tsne)//yscale_unit-1)*yscale_unit,(max(y_tsne)//yscale_unit+1)*yscale_unit]
    color_list = sns.color_palette('flare',n_colors=int(len(df)*1.2))

    fig = plt.figure(figsize=(5,5),dpi=200)
    ax = fig.add_subplot(1,1,1)
    ax.plot(x_tsne[:step_id+1],y_tsne[:step_id+1],linewidth=0.2,color='gray',zorder=1)
    ax.scatter(x_tsne[:step_id+1],y_tsne[:step_id+1],s=5,color=color_list[:step_id+1],zorder=2)
    ax.scatter(x_tsne[step_id:step_id+1],y_tsne[step_id:step_id+1],s=50,marker='*',color='blue',zorder=3)
    ax.set_xlim(*xlims)
    ax.set_ylim(*ylims)
    ax.axis('off')
    return fig

def run_tsne(chain):
    st.sidebar.write('Running t-SNE...')
    st.sidebar.write('This takes ~1 min for 1000 steps with ~10 token sentences')
    chain = chain.assign(cleaned_sentence=chain.sentence.str.replace(r'\[CLS\] ', '',regex=True).str.replace(r' \[SEP\]', '',regex=True))
    sentence_model = load_sentence_model()
    sentence_embeddings = sentence_model.encode(chain.cleaned_sentence.to_list(), show_progress_bar=False)

    tsne = TSNE(n_components = 2, n_iter=2000)
    big_pca = PCA(n_components = 50)
    tsne_vals = tsne.fit_transform(big_pca.fit_transform(sentence_embeddings))
    tsne = pd.concat([chain, pd.DataFrame(tsne_vals, columns = ['x_tsne', 'y_tsne'],index=chain.index)], axis = 1)
    return tsne

def autoplay() :
    for step_id in range(st.session_state.step_id, len(st.session_state.df), 1):
        x = st.empty()
        with x.container():
            st.markdown(show_changed_site(), unsafe_allow_html = True)
            fig = show_tsne_panel(st.session_state.df, step_id)
            st.session_state.prev_step_id = st.session_state.step_id
            st.session_state.step_id = step_id
            #plt.title(f'Step {step_id}')#: {show_changed_site()}')
            cols = st.columns([1,2,1])
            with cols[1]:
                st.pyplot(fig)
            time.sleep(.25)
        x.empty()

def initialize_buttons() :
    buttons = st.sidebar.empty()
    button_ids = []
    with buttons.container() :
        row1_labels = ['+1','+10','+100','+500']
        row1 = st.columns([4,5,6,6])
        for col_id,col in enumerate(row1):
            button_ids.append(col.button(row1_labels[col_id],key=row1_labels[col_id]))

        row2_labels = ['-1','-10','-100','-500']
        row2 = st.columns([4,5,6,6])
        for col_id,col in enumerate(row2):
            button_ids.append(col.button(row2_labels[col_id],key=row2_labels[col_id]))

        show_candidates_checked = st.checkbox('Show candidates')

    # Increment if any of them have been pressed
    increments = np.array([1,10,100,500,-1,-10,-100,-500])
    if any(button_ids) :
        increment_value = increments[np.array(button_ids)][0]
        st.session_state.prev_step_id = st.session_state.step_id
        new_step_id = st.session_state.step_id + increment_value
        st.session_state.step_id = min(len(st.session_state.df) - 1, max(0, new_step_id))
    if show_candidates_checked:
        st.write('Click any word to see each candidate with its probability')
        show_candidates()

def show_candidates():
    if 'curr_table' in st.session_state:
        st.session_state.curr_table.empty()
    step_id = st.session_state.step_id
    sentence = df.cleaned_sentence.loc[step_id]
    input_sent = tokenizer(sentence,return_tensors='pt')['input_ids']
    decoded_sent = [tokenizer.decode([token]) for token in input_sent[0]]
    char_nums = [len(word)+2 for word in decoded_sent]
    cols = st.columns(char_nums)
    with cols[0]:
        st.write(decoded_sent[0])
    with cols[-1]:
        st.write(decoded_sent[-1])
    for word_id,(col,word) in enumerate(zip(cols[1:-1],decoded_sent[1:-1])):
        with col:
            if st.button(word,key=f'word_{word_id}'):
                probs = mask_prob(model,mask_id,input_sent,word_id+1)
                _, candidates_df = sample_words(probs, word_id+1, input_sent)
                st.session_state.curr_table = st.table(candidates_df)


def show_changed_site():
    df = st.session_state.df
    step_id = st.session_state.step_id
    prev_step_id = st.session_state.prev_step_id
    curr_sent = df.cleaned_sentence.loc[step_id].split(' ')
    prev_sent = df.cleaned_sentence.loc[prev_step_id].split(' ')
    locs = [df.next_sample_loc.to_list()[step_id-1]-1] if 'next_sample_loc' in df else (
        [i for i in range(len(curr_sent)) if curr_sent[i] not in prev_sent]
    )
    disp_style = '"font-family:san serif; color:Black; font-size: 20px"'
    prefix = f'<p style={disp_style}>Step {st.session_state.step_id}&colon;&nbsp; <span style="font-weight:bold">'
    disp = ' '.join([f'<span style="color:Red">{word}</span>' if i in locs else f'{word}'
                    for (i, word) in enumerate(curr_sent)])
    suffix = '</span></p>'
    return prefix + disp + suffix

def clear_df():
    if 'df' in st.session_state:
        del st.session_state['df']


if __name__=='__main__':

    # Config
    max_width = 1500
    padding_top = 0
    padding_right = 2
    padding_bottom = 0
    padding_left = 2

    define_margins = f"""
    <style>
        .appview-container .main .block-container{{
            max-width: {max_width}px;
            padding-top: {padding_top}rem;
            padding-right: {padding_right}rem;
            padding-left: {padding_left}rem;
            padding-bottom: {padding_bottom}rem;
        }}
    </style>
    """
    hide_table_row_index = """
                <style>
                tbody th {display:none}
                .blank {display:none}
                </style>
                """
    st.markdown(define_margins, unsafe_allow_html=True)
    st.markdown(hide_table_row_index, unsafe_allow_html=True)
    input_type = st.sidebar.radio(
        label='1. Choose the input type',
        on_change=clear_df,
        options=('Use one of the example sentences','Use your own initial sentence')
    )

    # Title
    st.header("Demo: Probing BERT's priors with serial reproduction chains")

    # Load BERT
    tokenizer,model = load_model('bert-base-uncased')
    mask_id = tokenizer.encode("[MASK]")[1:-1][0]

    # First step: load the dataframe containing sentences
    if input_type=='Use one of the example sentences':
        sentence = st.sidebar.selectbox("Select the inital sentence",
                                ('--- Please select one from below ---',
                                 'About 170 campers attend the camps each week.',
                                 "Ali marpet's mother is joy rose.",
                                 'She grew up with three brothers and ten sisters.'))
        if sentence!='--- Please select one from below ---':
            if sentence=='About 170 campers attend the camps each week.':
                sentence_num = 6
            elif sentence=='She grew up with three brothers and ten sisters.':
                sentence_num = 8
            elif sentence=="Ali marpet's mother is joy rose." :
                sentence_num = 2
            st.session_state.df = load_data(sentence_num)
            st.session_state.finished_sampling = True
    else:
        sentence = st.sidebar.text_input('Type your own sentence here.',on_change=clear_df)
        num_steps = st.sidebar.number_input(label='How many steps do you want to run?',value=500)
        if st.sidebar.button('Run chains'):
            chain = run_chains(tokenizer, model, mask_id, sentence, num_steps=num_steps)
            st.session_state.df = run_tsne(chain)
            st.session_state.finished_sampling = True

    st.empty().markdown("\
          Let's explore sentences from BERT's prior! \
          Use the menu to the left to select a pre-generated chain, \
          or start a new chain using your own initial sentence.\
    " if not 'df' in st.session_state else "\
          Use the slider to select a step, or watch the autoplay.\
          Click 'Show candidates' to see the top proposals when each word is masked out.\
    ")

    if 'df' in st.session_state:
        df = st.session_state.df
        if 'step_id' not in st.session_state:
            st.session_state.prev_step_id = 0
            st.session_state.step_id = 0


        explore_type = st.sidebar.radio(
            '2. Choose how to explore the chain',
            options=['Click through steps','Autoplay']
        )

        if explore_type=='Autoplay':
            st.empty()
            st.sidebar.empty()
            autoplay()

        elif explore_type=='Click through steps':
            initialize_buttons()
            with st.container():
                st.markdown(show_changed_site(), unsafe_allow_html = True)
                fig = show_tsne_panel(df, st.session_state.step_id)
                cols = st.columns([1,2,1])
                with cols[1]:
                    st.pyplot(fig)