File size: 13,126 Bytes
4c1fd66
 
 
 
 
 
 
 
 
 
 
 
a5614b8
4c1fd66
 
 
 
 
 
 
 
 
 
 
 
 
a962672
4c1fd66
 
 
 
 
568fadb
4c1fd66
 
 
 
 
 
 
568fadb
4c1fd66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a962672
4c1fd66
 
 
 
 
 
 
 
 
568fadb
4c1fd66
 
a962672
4c1fd66
 
 
 
 
 
 
 
 
 
 
 
 
568fadb
4c1fd66
 
 
 
 
 
 
 
 
 
 
514a055
 
 
 
 
 
 
282bf19
 
514a055
4c1fd66
 
 
 
a71e38a
 
 
 
4c1fd66
 
f0842b2
4c1fd66
 
 
f0842b2
4c1fd66
f0842b2
 
4c1fd66
 
 
 
 
b103573
 
4c1fd66
b103573
4c1fd66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
282bf19
 
 
4c1fd66
 
 
 
 
282bf19
4c1fd66
282bf19
4c1fd66
 
 
 
 
 
 
 
 
 
 
282bf19
4c1fd66
 
 
 
 
 
 
 
282bf19
4c1fd66
 
282bf19
b103573
 
 
4c1fd66
282bf19
b103573
 
 
 
 
 
 
 
 
 
514a055
b103573
 
 
 
 
 
514a055
b103573
 
282bf19
 
 
 
4c1fd66
 
 
 
 
 
 
 
 
 
a71e38a
 
122c950
 
4c1fd66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import pandas as pd
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import torch
import torch.nn.functional as F
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from sentence_transformers import SentenceTransformer
from transformers import BertTokenizer,BertForMaskedLM
import cv2
import io

def load_sentence_model():
    sentence_model = SentenceTransformer('paraphrase-distilroberta-base-v1')
    return sentence_model

@st.cache(show_spinner=False)
def load_model(model_name):
    if model_name.startswith('bert'):
        tokenizer = BertTokenizer.from_pretrained(model_name)
        model = BertForMaskedLM.from_pretrained(model_name)
        model.eval()
    return tokenizer,model

@st.cache(show_spinner=False)
def load_data(sentence_num):
    df = pd.read_csv('tsne_out.csv')
    df = df.loc[lambda d: (d['sentence_num']==sentence_num)&(d['iter_num']<1000)]
    return df

#@st.cache(show_spinner=False)
def mask_prob(model,mask_id,sentences,position,temp=1):
    masked_sentences = sentences.clone()
    masked_sentences[:, position] = mask_id
    with torch.no_grad():
        logits = model(masked_sentences)[0]
    return F.log_softmax(logits[:, position] / temp, dim = -1)

#@st.cache(show_spinner=False)
def sample_words(probs,pos,sentences):
    candidates = [[tokenizer.decode([candidate]),torch.exp(probs)[0,candidate].item()]
                  for candidate in torch.argsort(probs[0],descending=True)[:10]]
    df = pd.DataFrame(data=candidates,columns=['word','prob'])
    chosen_words = torch.multinomial(torch.exp(probs), num_samples=1).squeeze(dim=-1)
    new_sentences = sentences.clone()
    new_sentences[:, pos] = chosen_words
    return new_sentences, df

def run_chains(tokenizer,model,mask_id,input_text,num_steps):
    init_sent = tokenizer(input_text,return_tensors='pt')['input_ids']
    seq_len = init_sent.shape[1]
    sentence = init_sent.clone()
    data_list = []
    st.sidebar.write('Generating samples...')
    st.sidebar.write('This takes ~1 min for 1000 steps with ~10 token sentences')
    chain_progress = st.sidebar.progress(0)
    for step_id in range(num_steps):
        chain_progress.progress((step_id+1)/num_steps)
        pos = torch.randint(seq_len-2,size=(1,)).item()+1
        data_list.append([step_id,' '.join([tokenizer.decode([token]) for token in sentence[0]]),pos])
        probs = mask_prob(model,mask_id,sentence,pos)
        sentence,_ = sample_words(probs,pos,sentence)
    return pd.DataFrame(data=data_list,columns=['step','sentence','next_sample_loc'])

#@st.cache(suppress_st_warning=True,show_spinner=False)
def run_tsne(chain):
    st.sidebar.write('Running t-SNE...')
    st.sidebar.write('This takes ~1 min for 1000 steps with ~10 token sentences')
    chain = chain.assign(cleaned_sentence=chain.sentence.str.replace(r'\[CLS\] ', '',regex=True).str.replace(r' \[SEP\]', '',regex=True))
    sentence_model = load_sentence_model()
    sentence_embeddings = sentence_model.encode(chain.cleaned_sentence.to_list(), show_progress_bar=False)

    tsne = TSNE(n_components = 2, n_iter=2000)
    big_pca = PCA(n_components = 50)
    tsne_vals = tsne.fit_transform(big_pca.fit_transform(sentence_embeddings))
    tsne = pd.concat([chain, pd.DataFrame(tsne_vals, columns = ['x_tsne', 'y_tsne'],index=chain.index)], axis = 1)
    return tsne

def clear_df():
    del st.session_state['df']

#@st.cache(show_spinner=False)
def plot_fig(df,sent_id,xlims,ylims,color_list):
    x_tsne, y_tsne = df.x_tsne, df.y_tsne
    fig = plt.figure(figsize=(5,5),dpi=200)
    ax = fig.add_subplot(1,1,1)
    ax.plot(x_tsne[:sent_id+1],y_tsne[:sent_id+1],linewidth=0.2,color='gray',zorder=1)
    ax.scatter(x_tsne[:sent_id+1],y_tsne[:sent_id+1],s=5,color=color_list[:sent_id+1],zorder=2)
    ax.scatter(x_tsne[sent_id:sent_id+1],y_tsne[sent_id:sent_id+1],s=50,marker='*',color='blue',zorder=3)
    ax.set_xlim(*xlims)
    ax.set_ylim(*ylims)
    ax.axis('off')
    ax.set_title(df.cleaned_sentence.to_list()[sent_id])
    #fig.savefig(f'figures/{sent_id}.png')
    buf = io.BytesIO()
    fig.savefig(buf, format="png", dpi=200)
    buf.seek(0)
    img_arr = np.frombuffer(buf.getvalue(), dtype=np.uint8)
    buf.close()
    img = cv2.imdecode(img_arr, 1)
    plt.clf()
    plt.close()
    return img

def pre_render_images(df,input_sent_id):
    sent_id_options = [min(len(df)-1,max(0,input_sent_id+increment)) for increment in [-500,-100,-10,-1,0,1,10,100,500]]
    x_tsne, y_tsne = df.x_tsne, df.y_tsne
    xscale_unit = (max(x_tsne)-min(x_tsne))/10
    yscale_unit = (max(y_tsne)-min(y_tsne))/10
    xmax,xmin = (max(x_tsne)//xscale_unit+1)*xscale_unit,(min(x_tsne)//xscale_unit-1)*xscale_unit
    ymax,ymin = (max(y_tsne)//yscale_unit+1)*yscale_unit,(min(y_tsne)//yscale_unit-1)*yscale_unit
    color_list = sns.color_palette('flare',n_colors=int(len(df)*1.2))
    sent_list = []
    fig_list = []
    fig_production = st.progress(0)
    for fig_id,sent_id in enumerate(sent_id_options):
        fig_production.progress(fig_id+1)
        img = plot_fig(df,sent_id,[xmin,xmax],[ymin,ymax],color_list)
        sent_list.append(df.cleaned_sentence.to_list()[sent_id])
        fig_list.append(img)
    return sent_list,fig_list


if __name__=='__main__':
    # Config
    max_width = 1500
    padding_top = 0
    padding_right = 2
    padding_bottom = 0
    padding_left = 2

    define_margins = f"""
    <style>
        .appview-container .main .block-container{{
            max-width: {max_width}px;
            padding-top: {padding_top}rem;
            padding-right: {padding_right}rem;
            padding-left: {padding_left}rem;
            padding-bottom: {padding_bottom}rem;
        }}
    </style>
    """
    hide_table_row_index = """
                <style>
                tbody th {display:none}
                .blank {display:none}
                </style>
                """
    st.markdown(define_margins, unsafe_allow_html=True)
    st.markdown(hide_table_row_index, unsafe_allow_html=True)

    # Title
    st.header("Demo: Probing BERT's priors with serial reproduction chains")
    st.text("Explore sentences in the serial reproduction chains generated by BERT!")
    st.text("Visit different positions in the chain using the widgets on the left.")
    st.text("Check 'Show candidates' to see what words are proposed when each word is masked out.")
    # Load BERT
    tokenizer,model = load_model('bert-base-uncased')
    mask_id = tokenizer.encode("[MASK]")[1:-1][0]

    # First step: load the dataframe containing sentences
    input_type = st.sidebar.radio(label='1. Choose the input type',options=('Use one of the example sentences','Use your own initial sentence'))

    if input_type=='Use one of the example sentences':
        sentence = st.sidebar.selectbox("Select the inital sentence",
                                ('About 170 campers attend the camps each week.',
                                'She grew up with three brothers and ten sisters.'))
        if sentence=='About 170 campers attend the camps each week.':
            sentence_num = 6
        else:
            sentence_num = 8

        st.session_state.df = load_data(sentence_num)

    else:
        sentence = st.sidebar.text_input('Type down your own sentence here.',on_change=clear_df)
        num_steps = st.sidebar.number_input(label='How many steps do you want to run?',value=1000)
        if st.sidebar.button('Run chains'):
            chain = run_chains(tokenizer,model,mask_id,sentence,num_steps=num_steps)
            st.session_state.df = run_tsne(chain)
            st.session_state.finished_sampling = True

    if 'df' in st.session_state:
        df = st.session_state.df
        sent_id = st.sidebar.slider(label='2. Select a position in the chain to start exploring',
                                    min_value=0,max_value=len(df)-1,value=0)

        if input_type=='Use one of the example sentences':
            explore_type = st.sidebar.radio('3. Choose the way to explore',options=['In fixed increments','Click through each step','Autoplay'])
        else:
            explore_type = st.sidebar.radio('3. Choose the way to explore',options=['In fixed increments','Click through each step'])
        if explore_type=='Autoplay':
            #if st.button('Create the video (this may take a few minutes)'):
                #st.write('Creating the video...')
                #x_tsne, y_tsne = df.x_tsne, df.y_tsne
                #xscale_unit = (max(x_tsne)-min(x_tsne))/10
                #yscale_unit = (max(y_tsne)-min(y_tsne))/10
                #xlims = [(min(x_tsne)//xscale_unit-1)*xscale_unit,(max(x_tsne)//xscale_unit+1)*xscale_unit]
                #ylims = [(min(y_tsne)//yscale_unit-1)*yscale_unit,(max(y_tsne)//yscale_unit+1)*yscale_unit]
                #color_list = sns.color_palette('flare',n_colors=1200)
                #fig_production = st.progress(0)

                #img = plot_fig(df,0,xlims,ylims,color_list)
                #img = cv2.imread('figures/0.png')
                #height, width, layers = img.shape
                #size = (width,height)
                #out = cv2.VideoWriter('sampling_video.mp4',cv2.VideoWriter_fourcc(*'H264'), 3, size)
                #for sent_id in range(1000):
                #    fig_production.progress((sent_id+1)/1000)
                #    img = plot_fig(df,sent_id,xlims,ylims,color_list)
                    #img = cv2.imread(f'figures/{sent_id}.png')
                #    out.write(img)
                #out.release()
            cols = st.columns([1,2,1])
            with cols[1]:
                with open(f'sampling_video_{sentence_num}.mp4', 'rb') as f:
                    st.video(f)
        else:
            if explore_type=='In fixed increments':
                button_labels = ['-500','-100','-10','-1','0','+1','+10','+100','+500']
                increment = st.sidebar.radio(label='select increment',options=button_labels,index=4)
                sent_id += int(increment.replace('+',''))
                sent_id = min(len(df)-1,max(0,sent_id))
            elif explore_type=='Click through each step':
                sent_id = st.sidebar.number_input(label='step number',value=sent_id)

            x_tsne, y_tsne = df.x_tsne, df.y_tsne
            xscale_unit = (max(x_tsne)-min(x_tsne))/10
            yscale_unit = (max(y_tsne)-min(y_tsne))/10
            xlims = [(min(x_tsne)//xscale_unit-1)*xscale_unit,(max(x_tsne)//xscale_unit+1)*xscale_unit]
            ylims = [(min(y_tsne)//yscale_unit-1)*yscale_unit,(max(y_tsne)//yscale_unit+1)*yscale_unit]
            color_list = sns.color_palette('flare',n_colors=int(len(df)*1.2))

            fig = plt.figure(figsize=(5,5),dpi=200)
            ax = fig.add_subplot(1,1,1)
            ax.plot(x_tsne[:sent_id+1],y_tsne[:sent_id+1],linewidth=0.2,color='gray',zorder=1)
            ax.scatter(x_tsne[:sent_id+1],y_tsne[:sent_id+1],s=5,color=color_list[:sent_id+1],zorder=2)
            ax.scatter(x_tsne[sent_id:sent_id+1],y_tsne[sent_id:sent_id+1],s=50,marker='*',color='blue',zorder=3)
            ax.set_xlim(*xlims)
            ax.set_ylim(*ylims)
            ax.axis('off')

            sentence = df.cleaned_sentence.to_list()[sent_id]
            input_sent = tokenizer(sentence,return_tensors='pt')['input_ids']
            decoded_sent = [tokenizer.decode([token]) for token in input_sent[0]]
            show_candidates = st.checkbox('Show candidates')
            if show_candidates:
                st.write('Click any word to see each candidate with its probability')
                cols = st.columns(len(decoded_sent))
                with cols[0]:
                    st.write(decoded_sent[0])
                with cols[-1]:
                    st.write(decoded_sent[-1])
                for word_id,(col,word) in enumerate(zip(cols[1:-1],decoded_sent[1:-1])):
                    with col:
                        if st.button(word):
                            probs = mask_prob(model,mask_id,input_sent,word_id+1)
                            _,candidates_df = sample_words(probs, word_id+1, input_sent)
                            st.table(candidates_df)
            else:
                disp_style = '"font-family:san serif; color:Black; font-size: 25px; font-weight:bold"'
                if explore_type=='Click through each step' and input_type=='Use your own initial sentence' and sent_id>0 and 'finished_sampling' in st.session_state:
                    sampled_loc = df.next_sample_loc.to_list()[sent_id-1]
                    disp_sent_before = f'<p style={disp_style}>'+' '.join(decoded_sent[1:sampled_loc])
                    new_word = f'<span style="color:Red">{decoded_sent[sampled_loc]}</span>'
                    disp_sent_after = ' '.join(decoded_sent[sampled_loc+1:-1])+'</p>'
                    st.markdown(disp_sent_before+' '+new_word+' '+disp_sent_after,unsafe_allow_html=True)
                else:
                    st.markdown(f'<p style={disp_style}>{sentence}</p>',unsafe_allow_html=True)
            cols = st.columns([1,2,1])
            with cols[1]:
                st.pyplot(fig)