File size: 6,443 Bytes
c5b16f9 6d0a7aa c5b16f9 1864742 c5b16f9 94349ba 650b6f6 94349ba 6d0a7aa 650b6f6 a13748e 6d0a7aa a13748e 650b6f6 6cf4cc3 650b6f6 2fcc9e9 a13748e 6d0a7aa a13748e 2fcc9e9 6d0a7aa 650b6f6 0f743cc a13748e 6d0a7aa 94349ba 650b6f6 94349ba a13748e 6d0a7aa a13748e 2759288 2fcc9e9 0f743cc 2fcc9e9 6d0a7aa ed8d73f 0f743cc ed8d73f 0f743cc ed8d73f 6d0a7aa 2759288 2fcc9e9 2759288 650b6f6 94349ba 1864742 7ce3b6b 1864742 94349ba a13748e 2fcc9e9 ed8d73f 6d0a7aa ed8d73f 6d0a7aa a13748e 41ccd9e 0f743cc 41ccd9e 94349ba 2fcc9e9 ed8d73f 0f743cc 6d0a7aa 0f743cc ed8d73f 2fcc9e9 6d0a7aa 2fcc9e9 ed8d73f 0f743cc 6d0a7aa 0f743cc ed8d73f 6d0a7aa ed8d73f 0f743cc 6d0a7aa 0f743cc a13748e 6d0a7aa a13748e 0f743cc 6d0a7aa 0f743cc ed8d73f 2fcc9e9 94349ba 1864742 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
import json
from datetime import datetime
import gradio as gr
import pandas as pd
def read_json(file_name):
with open(file_name, "r") as f:
json_data = json.load(f)
return json_data
def truncate_text(text, max_length=40):
if len(text) > max_length:
return text[: max_length - 1] + "…"
else:
return text
json_file = "awesome-japanese-nlp-resources-search.json"
json_data = read_json(json_file)
data = {
"project_name": [],
"downloads": [],
"stars": [],
"description": [],
"first_commit": [],
"latest_commit": [],
"source": [],
"languages": [],
"type": [],
}
for data_json in json_data:
url = data_json["url"]
description = data_json["description"].lower()
project_name = data_json["project_name"]
source = data_json["source"]
languages = data_json["languages"]
repo_type = data_json["model_or_dataset"]
first_commit = data_json["first_commit"]
if first_commit:
first_commit = datetime.strptime(first_commit, "%Y-%m-%d %H:%M:%S")
first_commit = first_commit.date()
latest_commit = data_json["latest_commit"]
if latest_commit:
latest_commit = datetime.strptime(latest_commit, "%Y-%m-%d %H:%M:%S")
latest_commit = latest_commit.date()
if "stargazers_count" in data_json:
data["stars"].append(data_json["stargazers_count"])
else:
data["stars"].append(None)
if "downloads" in data_json:
data["downloads"].append(data_json["downloads"])
else:
data["downloads"].append(None)
data["project_name"].append(f"[{truncate_text(project_name)}]({url})")
data["source"].append(source)
data["description"].append(description)
data["languages"].append(languages)
data["type"].append(repo_type)
data["first_commit"].append(first_commit)
data["latest_commit"].append(latest_commit)
data = pd.DataFrame(data)
def show_search_results(
language_filter, queries, source_checkbox, show_checkbox
):
queries = queries.lower()
queries = queries.split()
df_search = data
if language_filter:
def contains_language(language_list, filter_lang):
return filter_lang in language_list
matches = df_search["languages"].apply(
contains_language, filter_lang=language_filter
)
df_search = df_search[matches]
# source_checkbox
if "GitHub" not in source_checkbox:
df_search = df_search[df_search["source"] != "GitHub"]
df_search = df_search.drop("stars", axis=1)
if "Hugging Face" not in source_checkbox:
df_search = df_search[df_search["source"] != "Hugging Face"]
df_search = df_search.drop("downloads", axis=1)
if "Dataset" in source_checkbox:
df_search = df_search[df_search["type"] == "dataset"]
if "Model" in source_checkbox:
df_search = df_search[df_search["type"] == "model"]
# show_checkbox
if "project_name" not in show_checkbox:
df_search = df_search.drop("project_name", axis=1)
if "downloads" not in show_checkbox:
df_search = df_search.drop("downloads", axis=1)
if "stars" not in show_checkbox:
df_search = df_search.drop("stars", axis=1)
if "first_commit" not in show_checkbox:
df_search = df_search.drop("first_commit", axis=1)
if "latest_commit" not in show_checkbox:
df_search = df_search.drop("latest_commit", axis=1)
if "description" not in show_checkbox:
df_search = df_search.drop("description", axis=1)
if "source" not in show_checkbox:
df_search = df_search.drop("source", axis=1)
if "languages" not in show_checkbox:
df_search = df_search.drop("languages", axis=1)
if "type" not in show_checkbox:
df_search = df_search.drop("type", axis=1)
for query in queries:
contained_description = data["description"].str.contains(query)
contained_project_name = data["project_name"].str.contains(query)
df_search = df_search[contained_description | contained_project_name]
return df_search
with gr.Blocks() as demo:
gr.Markdown(
"""
# Awesome Japanese NLP resources search 🔎
You can search for open-source software from [1250+ Japanese NLP repositories](https://github.com/taishi-i/awesome-japanese-nlp-resources).
"""
)
query = gr.Textbox(label="Search words", placeholder="llm")
languages = [
"Python",
"Jupyter Notebook",
"Java",
"C++",
"JavaScript",
"TypeScript",
"C#",
"Rust",
"Go",
"C",
"Kotlin",
"Ruby",
"Perl",
]
language_selector = gr.Dropdown(
label="Programming Language",
choices=languages,
)
source_checkbox = gr.CheckboxGroup(
["GitHub", "Hugging Face", "Dataset", "Model"],
value=["GitHub", "Hugging Face"],
label="Source",
)
show_checkbox = gr.CheckboxGroup(
[
"project_name",
"downloads",
"stars",
"description",
"first_commit",
"latest_commit",
"source",
"type",
"languages",
],
value=[
"project_name",
"downloads",
"stars",
"description",
],
label="Display columns in a table",
)
df = gr.DataFrame(
value=data,
type="pandas",
datatype="markdown",
height=600,
)
query.change(
fn=show_search_results,
inputs=[
language_selector,
query,
source_checkbox,
show_checkbox,
],
outputs=df,
)
language_selector.change(
fn=show_search_results,
inputs=[
language_selector,
query,
source_checkbox,
show_checkbox,
],
outputs=df,
)
source_checkbox.change(
fn=show_search_results,
inputs=[
language_selector,
query,
source_checkbox,
show_checkbox,
],
outputs=df,
)
show_checkbox.change(
fn=show_search_results,
inputs=[
language_selector,
query,
source_checkbox,
show_checkbox,
],
outputs=df,
)
demo.launch()
|