Spaces:
Sleeping
Sleeping
File size: 4,653 Bytes
fb115f3 ed3b297 73e00ea ed56b0d 65033a4 ed3b297 73e00ea 15a9e3b 5eacffe 65033a4 5eacffe 73e00ea 5eacffe ed3b297 65033a4 cf97ba5 65033a4 73e00ea dd56502 65033a4 73e00ea ed3b297 73e00ea ed56b0d ed3b297 73e00ea ed56b0d 73e00ea 5eacffe dcbb3a1 db18fb3 5eacffe 73e00ea ed3b297 cabb4c3 73e00ea cabb4c3 5eacffe 73e00ea ed3b297 73e00ea 14ee6f8 65033a4 cabb4c3 73e00ea cabb4c3 73e00ea 65033a4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 |
import os
import requests
import streamlit as st
from io import BytesIO
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from transformers import pipeline
import torch
# Set up the page configuration as the first Streamlit command
st.set_page_config(page_title="RAG-based PDF Chat", layout="centered", page_icon="π")
# Load the summarization pipeline model
@st.cache_resource
def load_summarization_pipeline():
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
return summarizer
summarizer = load_summarization_pipeline()
# Dictionary of Hugging Face PDF URLs grouped by folders
PDF_FOLDERS = {
"PPC and Administration": [
"https://huggingface.co/spaces/tahirsher/GenAI_Lawyers_Guide/tree/main/PPC%20and%20Administration",
],
"IHC": [
"https://huggingface.co/spaces/tahirsher/GenAI_Lawyers_Guide/tree/main/IHC"
"LHC": [
"https://huggingface.co/spaces/tahirsher/GenAI_Lawyers_Guide/tree/main/LHC"
"Lahore High Court Rules and Orders": [
"https://huggingface.co/spaces/tahirsher/GenAI_Lawyers_Guide/tree/main/Lahore%20High%20Court%20Rules%20and%20Orders"
"PHC": [
"https://huggingface.co/spaces/tahirsher/GenAI_Lawyers_Guide/tree/main/PHC"
"SC": [
"https://huggingface.co/spaces/tahirsher/GenAI_Lawyers_Guide/tree/main/SC"
],
}
# Helper function to convert Hugging Face blob URLs to direct download URLs
def get_huggingface_raw_url(url):
if "huggingface.co" in url and "/blob/" in url:
return url.replace("/blob/", "/resolve/")
return url
# Fetch and extract text from all PDFs in specified folders
def fetch_pdf_text_from_folders(pdf_folders):
all_text = ""
for folder_name, urls in pdf_folders.items():
folder_text = f"\n[Folder: {folder_name}]\n"
for url in urls:
raw_url = get_huggingface_raw_url(url)
response = requests.get(raw_url)
if response.status_code == 200:
pdf_file = BytesIO(response.content)
try:
pdf_reader = PdfReader(pdf_file)
for page in pdf_reader.pages:
page_text = page.extract_text()
if page_text:
folder_text += page_text
except Exception as e:
st.error(f"Failed to read PDF from URL {url}: {e}")
else:
st.error(f"Failed to fetch PDF from URL: {url}")
all_text += folder_text
return all_text
# Split text into manageable chunks
@st.cache_data
def get_text_chunks(text):
text_splitter = RecursiveCharacterTextSplitter(chunk_size=10000, chunk_overlap=1000)
chunks = text_splitter.split_text(text)
return chunks
# Initialize embedding function
embedding_function = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
# Create a FAISS vector store with embeddings
@st.cache_resource
def load_or_create_vector_store(text_chunks):
vector_store = FAISS.from_texts(text_chunks, embedding=embedding_function)
return vector_store
# Generate summary based on the retrieved text
def generate_summary_with_huggingface(query, retrieved_text):
summarization_input = f"{query}\n\nRelated information:\n{retrieved_text}"
max_input_length = 1024
summarization_input = summarization_input[:max_input_length]
summary = summarizer(summarization_input, max_length=500, min_length=50, do_sample=False)
return summary[0]["summary_text"]
# Generate response for user query
def user_input(user_question, vector_store):
docs = vector_store.similarity_search(user_question)
context_text = " ".join([doc.page_content for doc in docs])
return generate_summary_with_huggingface(user_question, context_text)
# Main function to run the Streamlit app
def main():
st.title("π Gen AI Lawyers Guide")
raw_text = fetch_pdf_text_from_folders(PDF_FOLDERS)
text_chunks = get_text_chunks(raw_text)
vector_store = load_or_create_vector_store(text_chunks)
user_question = st.text_input("Ask a Question:", placeholder="Type your question here...")
if st.button("Get Response"):
if not user_question:
st.warning("Please enter a question before submitting.")
else:
with st.spinner("Generating response..."):
answer = user_input(user_question, vector_store)
st.markdown(f"**π€ AI:** {answer}")
if __name__ == "__main__":
main() |