Spaces:
Sleeping
Sleeping
File size: 8,264 Bytes
aca9481 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
#!/usr/bin/python3
# -*- coding: utf-8 -*-
"""
https://huggingface.co/spaces/fffiloni/langchain-chat-with-pdf-openai
"""
import argparse
import json
import time
from typing import List, Tuple
import gradio as gr
from openai import OpenAI
from threading import Thread
import _queue
from queue import Queue
import project_settings as settings
def get_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--openai_api_key",
default=settings.environment.get("openai_api_key", default=None, dtype=str),
type=str
)
args = parser.parse_args()
return args
def greet(question: str, history: List[Tuple[str, str]]):
answer = "Hello " + question + "!"
result = history + [(question, answer)]
return result
def get_message_list(client: OpenAI, thread_id: str):
messages = client.beta.threads.messages.list(
thread_id=thread_id
)
result = list()
for message in messages.data:
content = list()
for msg in message.content:
content.append({
"text": {
"annotations": msg.text.annotations,
"value": msg.text.value,
},
"type": msg.type,
})
result.append({
"id": message.id,
"assistant_id": message.assistant_id,
"content": content,
"created_at": message.created_at,
"file_ids": message.file_ids,
"metadata": message.metadata,
"object": message.object,
"role": message.role,
"run_id": message.run_id,
"thread_id": message.thread_id,
})
result = list(sorted(result, key=lambda x: x["created_at"]))
return result
def convert_message_list_to_response(message_list: List[dict]) -> str:
response = ""
for message in message_list:
role = message["role"]
content = message["content"]
for c in content:
if c["type"] != "text":
continue
text: dict = c["text"]
msg = "{}: \n{}\n".format(role, text["value"])
response += msg
response += "-" * 80
response += "\n"
return response
def streaming_refresh(openai_api_key: str,
thread_id: str,
queue: Queue,
):
delta_time = 0.3
last_response = None
no_updates_count = 0
max_no_updates_count = 5
while True:
time.sleep(delta_time)
this_response = refresh(openai_api_key, thread_id)
if this_response == last_response:
no_updates_count += 1
if no_updates_count >= max_no_updates_count:
break
last_response = this_response
queue.put(this_response, block=True, timeout=2)
return last_response
def refresh(openai_api_key: str,
thread_id: str,
):
client = OpenAI(
api_key=openai_api_key,
)
message_list = get_message_list(client, thread_id=thread_id)
response = convert_message_list_to_response(message_list)
return response
def add_and_run(openai_api_key: str,
assistant_id: str,
thread_id: str,
name: str,
instructions: str,
model: str,
query: str,
):
client = OpenAI(
api_key=openai_api_key,
)
if assistant_id is None or len(assistant_id.strip()) == 0:
assistant = client.beta.assistants.create(
name=name,
instructions=instructions,
# tools=[{"type": "code_interpreter"}],
model=model,
)
assistant_id = assistant.id
if thread_id is None or len(thread_id.strip()) == 0:
thread = client.beta.threads.create()
thread_id = thread.id
message = client.beta.threads.messages.create(
thread_id=thread_id,
role="user",
content=query
)
run = client.beta.threads.runs.create(
thread_id=thread_id,
assistant_id=assistant_id,
)
run = client.beta.threads.runs.retrieve(
thread_id=thread_id,
run_id=run.id
)
response_queue = Queue(maxsize=10)
refresh_kwargs = dict(
openai_api_key=openai_api_key,
thread_id=thread_id,
queue=response_queue,
)
thread = Thread(target=streaming_refresh, kwargs=refresh_kwargs)
thread.start()
delta_time = 0.1
last_response = None
no_updates_count = 0
max_no_updates_count = 10
while True:
time.sleep(delta_time)
try:
this_response = response_queue.get(block=True, timeout=2)
except _queue.Empty:
break
if this_response == last_response:
no_updates_count += 1
if no_updates_count >= max_no_updates_count:
break
last_response = this_response
result = [
assistant_id, thread_id,
last_response
]
yield result
def main():
args = get_args()
description = """
chat llm
"""
# ui
with gr.Blocks() as blocks:
gr.Markdown(value=description)
with gr.Row():
# settings
with gr.Column(scale=3):
with gr.Tabs():
with gr.TabItem("create assistant"):
openai_api_key = gr.Text(
value=args.openai_api_key,
label="openai_api_key",
placeholder="Fill with your `openai_api_key`"
)
name = gr.Textbox(label="name")
instructions = gr.Textbox(label="instructions")
model = gr.Dropdown(["gpt-4-1106-preview"], value="gpt-4-1106-preview", label="model")
# functions
functions = gr.TextArea(label="functions")
# upload files
retrieval_files = gr.Files(label="retrieval files")
# chat
with gr.Column(scale=5):
response = gr.Textbox(lines=5, max_lines=80, label="response")
query = gr.Textbox(lines=2, label="query")
# chat_bot = gr.Chatbot([], elem_id="context", height=400)
# text_box = gr.Textbox(show_label=False, placeholder="Enter text and press enter", container=False)
with gr.Row():
with gr.Column(scale=1):
add_and_run_button = gr.Button("Add and run")
with gr.Column(scale=1):
refresh_button = gr.Button("Refresh")
# states
with gr.Column(scale=2):
# upload files
assistant_id = gr.Textbox(value=None, label="assistant_id")
thread_id = gr.Textbox(value=None, label="thread_id")
# examples
with gr.Row():
gr.Examples(
examples=[
[
"Math Tutor",
"You are a personal math tutor. Write and run code to answer math questions.",
"gpt-4-1106-preview",
"123 * 524 等于多少?"
]
],
inputs=[
name, instructions, model,
query,
],
examples_per_page=5
)
# add and run
add_and_run_button.click(
add_and_run,
inputs=[
openai_api_key,
assistant_id, thread_id,
name, instructions, model,
query,
],
outputs=[
assistant_id, thread_id,
response,
],
)
# refresh
refresh_button.click(
refresh,
inputs=[
openai_api_key,
thread_id,
],
outputs=[
response
]
)
blocks.queue().launch()
return
if __name__ == '__main__':
main()
|