Spaces:
Paused
Paused
File size: 8,596 Bytes
6e14436 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
# Copyright (c) Facebook, Inc. and its affiliates.
from collections import defaultdict
import torch
import sys
import json
import numpy as np
from detectron2.structures import Boxes, pairwise_iou
COCO_PATH = 'datasets/coco/annotations/instances_train2017.json'
IMG_PATH = 'datasets/coco/train2017/'
LVIS_PATH = 'datasets/lvis/lvis_v1_train.json'
NO_SEG = False
if NO_SEG:
SAVE_PATH = 'datasets/lvis/lvis_v1_train+coco_box.json'
else:
SAVE_PATH = 'datasets/lvis/lvis_v1_train+coco_mask.json'
THRESH = 0.7
DEBUG = False
# This mapping is extracted from the official LVIS mapping:
# https://github.com/lvis-dataset/lvis-api/blob/master/data/coco_to_synset.json
COCO_SYNSET_CATEGORIES = [
{"synset": "person.n.01", "coco_cat_id": 1},
{"synset": "bicycle.n.01", "coco_cat_id": 2},
{"synset": "car.n.01", "coco_cat_id": 3},
{"synset": "motorcycle.n.01", "coco_cat_id": 4},
{"synset": "airplane.n.01", "coco_cat_id": 5},
{"synset": "bus.n.01", "coco_cat_id": 6},
{"synset": "train.n.01", "coco_cat_id": 7},
{"synset": "truck.n.01", "coco_cat_id": 8},
{"synset": "boat.n.01", "coco_cat_id": 9},
{"synset": "traffic_light.n.01", "coco_cat_id": 10},
{"synset": "fireplug.n.01", "coco_cat_id": 11},
{"synset": "stop_sign.n.01", "coco_cat_id": 13},
{"synset": "parking_meter.n.01", "coco_cat_id": 14},
{"synset": "bench.n.01", "coco_cat_id": 15},
{"synset": "bird.n.01", "coco_cat_id": 16},
{"synset": "cat.n.01", "coco_cat_id": 17},
{"synset": "dog.n.01", "coco_cat_id": 18},
{"synset": "horse.n.01", "coco_cat_id": 19},
{"synset": "sheep.n.01", "coco_cat_id": 20},
{"synset": "beef.n.01", "coco_cat_id": 21},
{"synset": "elephant.n.01", "coco_cat_id": 22},
{"synset": "bear.n.01", "coco_cat_id": 23},
{"synset": "zebra.n.01", "coco_cat_id": 24},
{"synset": "giraffe.n.01", "coco_cat_id": 25},
{"synset": "backpack.n.01", "coco_cat_id": 27},
{"synset": "umbrella.n.01", "coco_cat_id": 28},
{"synset": "bag.n.04", "coco_cat_id": 31},
{"synset": "necktie.n.01", "coco_cat_id": 32},
{"synset": "bag.n.06", "coco_cat_id": 33},
{"synset": "frisbee.n.01", "coco_cat_id": 34},
{"synset": "ski.n.01", "coco_cat_id": 35},
{"synset": "snowboard.n.01", "coco_cat_id": 36},
{"synset": "ball.n.06", "coco_cat_id": 37},
{"synset": "kite.n.03", "coco_cat_id": 38},
{"synset": "baseball_bat.n.01", "coco_cat_id": 39},
{"synset": "baseball_glove.n.01", "coco_cat_id": 40},
{"synset": "skateboard.n.01", "coco_cat_id": 41},
{"synset": "surfboard.n.01", "coco_cat_id": 42},
{"synset": "tennis_racket.n.01", "coco_cat_id": 43},
{"synset": "bottle.n.01", "coco_cat_id": 44},
{"synset": "wineglass.n.01", "coco_cat_id": 46},
{"synset": "cup.n.01", "coco_cat_id": 47},
{"synset": "fork.n.01", "coco_cat_id": 48},
{"synset": "knife.n.01", "coco_cat_id": 49},
{"synset": "spoon.n.01", "coco_cat_id": 50},
{"synset": "bowl.n.03", "coco_cat_id": 51},
{"synset": "banana.n.02", "coco_cat_id": 52},
{"synset": "apple.n.01", "coco_cat_id": 53},
{"synset": "sandwich.n.01", "coco_cat_id": 54},
{"synset": "orange.n.01", "coco_cat_id": 55},
{"synset": "broccoli.n.01", "coco_cat_id": 56},
{"synset": "carrot.n.01", "coco_cat_id": 57},
# {"synset": "frank.n.02", "coco_cat_id": 58},
{"synset": "sausage.n.01", "coco_cat_id": 58},
{"synset": "pizza.n.01", "coco_cat_id": 59},
{"synset": "doughnut.n.02", "coco_cat_id": 60},
{"synset": "cake.n.03", "coco_cat_id": 61},
{"synset": "chair.n.01", "coco_cat_id": 62},
{"synset": "sofa.n.01", "coco_cat_id": 63},
{"synset": "pot.n.04", "coco_cat_id": 64},
{"synset": "bed.n.01", "coco_cat_id": 65},
{"synset": "dining_table.n.01", "coco_cat_id": 67},
{"synset": "toilet.n.02", "coco_cat_id": 70},
{"synset": "television_receiver.n.01", "coco_cat_id": 72},
{"synset": "laptop.n.01", "coco_cat_id": 73},
{"synset": "mouse.n.04", "coco_cat_id": 74},
{"synset": "remote_control.n.01", "coco_cat_id": 75},
{"synset": "computer_keyboard.n.01", "coco_cat_id": 76},
{"synset": "cellular_telephone.n.01", "coco_cat_id": 77},
{"synset": "microwave.n.02", "coco_cat_id": 78},
{"synset": "oven.n.01", "coco_cat_id": 79},
{"synset": "toaster.n.02", "coco_cat_id": 80},
{"synset": "sink.n.01", "coco_cat_id": 81},
{"synset": "electric_refrigerator.n.01", "coco_cat_id": 82},
{"synset": "book.n.01", "coco_cat_id": 84},
{"synset": "clock.n.01", "coco_cat_id": 85},
{"synset": "vase.n.01", "coco_cat_id": 86},
{"synset": "scissors.n.01", "coco_cat_id": 87},
{"synset": "teddy.n.01", "coco_cat_id": 88},
{"synset": "hand_blower.n.01", "coco_cat_id": 89},
{"synset": "toothbrush.n.01", "coco_cat_id": 90},
]
def get_bbox(ann):
bbox = ann['bbox']
return [bbox[0], bbox[1], bbox[0] + bbox[2], bbox[1] + bbox[3]]
if __name__ == '__main__':
file_name_key = 'file_name' if 'v0.5' in LVIS_PATH else 'coco_url'
coco_data = json.load(open(COCO_PATH, 'r'))
lvis_data = json.load(open(LVIS_PATH, 'r'))
coco_cats = coco_data['categories']
lvis_cats = lvis_data['categories']
num_find = 0
num_not_find = 0
num_twice = 0
coco2lviscats = {}
synset2lvisid = {x['synset']: x['id'] for x in lvis_cats}
# cocoid2synset = {x['coco_cat_id']: x['synset'] for x in COCO_SYNSET_CATEGORIES}
coco2lviscats = {x['coco_cat_id']: synset2lvisid[x['synset']] \
for x in COCO_SYNSET_CATEGORIES if x['synset'] in synset2lvisid}
print(len(coco2lviscats))
lvis_file2id = {x[file_name_key][-16:]: x['id'] for x in lvis_data['images']}
lvis_id2img = {x['id']: x for x in lvis_data['images']}
lvis_catid2name = {x['id']: x['name'] for x in lvis_data['categories']}
coco_file2anns = {}
coco_id2img = {x['id']: x for x in coco_data['images']}
coco_img2anns = defaultdict(list)
for ann in coco_data['annotations']:
coco_img = coco_id2img[ann['image_id']]
file_name = coco_img['file_name'][-16:]
if ann['category_id'] in coco2lviscats and \
file_name in lvis_file2id:
lvis_image_id = lvis_file2id[file_name]
lvis_image = lvis_id2img[lvis_image_id]
lvis_cat_id = coco2lviscats[ann['category_id']]
if lvis_cat_id in lvis_image['neg_category_ids']:
continue
if DEBUG:
import cv2
img_path = IMG_PATH + file_name
img = cv2.imread(img_path)
print(lvis_catid2name[lvis_cat_id])
print('neg', [lvis_catid2name[x] for x in lvis_image['neg_category_ids']])
cv2.imshow('img', img)
cv2.waitKey()
ann['category_id'] = lvis_cat_id
ann['image_id'] = lvis_image_id
coco_img2anns[file_name].append(ann)
lvis_img2anns = defaultdict(list)
for ann in lvis_data['annotations']:
lvis_img = lvis_id2img[ann['image_id']]
file_name = lvis_img[file_name_key][-16:]
lvis_img2anns[file_name].append(ann)
ann_id_count = 0
anns = []
for file_name in lvis_img2anns:
coco_anns = coco_img2anns[file_name]
lvis_anns = lvis_img2anns[file_name]
ious = pairwise_iou(
Boxes(torch.tensor([get_bbox(x) for x in coco_anns])),
Boxes(torch.tensor([get_bbox(x) for x in lvis_anns]))
)
for ann in lvis_anns:
ann_id_count = ann_id_count + 1
ann['id'] = ann_id_count
anns.append(ann)
for i, ann in enumerate(coco_anns):
if len(ious[i]) == 0 or ious[i].max() < THRESH:
ann_id_count = ann_id_count + 1
ann['id'] = ann_id_count
anns.append(ann)
else:
duplicated = False
for j in range(len(ious[i])):
if ious[i, j] >= THRESH and \
coco_anns[i]['category_id'] == lvis_anns[j]['category_id']:
duplicated = True
if not duplicated:
ann_id_count = ann_id_count + 1
ann['id'] = ann_id_count
anns.append(ann)
if NO_SEG:
for ann in anns:
del ann['segmentation']
lvis_data['annotations'] = anns
print('# Images', len(lvis_data['images']))
print('# Anns', len(lvis_data['annotations']))
json.dump(lvis_data, open(SAVE_PATH, 'w'))
|