File size: 9,283 Bytes
999140c
cbd88cd
 
999140c
7de8585
cbd88cd
 
 
7de8585
 
8390f90
cbd88cd
 
 
8390f90
cbd88cd
8390f90
 
cbd88cd
 
 
 
 
 
 
 
 
 
8390f90
999140c
 
8390f90
f3cff0c
 
 
 
488aa8f
 
 
 
f3cff0c
8390f90
 
1bdb168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8390f90
 
 
 
1bdb168
 
 
 
 
 
 
8390f90
 
1bdb168
 
 
 
 
8390f90
 
1bdb168
8390f90
 
1bdb168
8390f90
 
 
1bdb168
8390f90
 
 
1bdb168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45fb2aa
1bdb168
 
 
45fb2aa
1bdb168
 
 
 
45fb2aa
 
 
 
1bdb168
45fb2aa
1bdb168
 
 
45fb2aa
1bdb168
 
 
 
45fb2aa
 
 
 
1bdb168
45fb2aa
1bdb168
 
 
45fb2aa
 
 
 
 
1600894
 
 
 
 
45fb2aa
1600894
 
 
 
 
 
 
 
 
 
 
 
1bdb168
45fb2aa
1600894
 
1bdb168
 
1600894
1bdb168
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8390f90
 
45fb2aa
f3cff0c
 
 
 
 
 
 
 
45fb2aa
 
 
 
 
 
 
 
 
 
 
 
 
 
f3cff0c
45fb2aa
 
 
 
 
 
 
 
 
f3cff0c
45fb2aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1600894
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45fb2aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import csv
import os
import random
import sys
from itertools import product

import gdown
import gradio as gr
import matplotlib
import matplotlib.patches as patches
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision
import torchvision.models as models
import torchvision.transforms as transforms
import torchvision.transforms.functional as TF
from matplotlib import pyplot as plt
from matplotlib.patches import ConnectionPatch
from PIL import Image
from torch.utils.data import DataLoader

from common.evaluation import Evaluator
from common.logger import AverageMeter, Logger
from data import download
from model import chmnet
from model.base.geometry import Geometry

csv.field_size_limit(sys.maxsize)

# Downloading the Model

md5 = "6b7b4d7bad7f89600fac340d6aa7708b"

gdown.cached_download(
    url="https://drive.google.com/u/0/uc?id=1zsJRlAsoOn5F0GTCprSFYwDDfV85xDy6&export=download",
    path="pas_psi.pt",
    quiet=False,
    md5=md5,
)

# Model Initialization
args = dict(
    {
        "alpha": [0.05, 0.1],
        "benchmark": "pfpascal",
        "bsz": 90,
        "datapath": "../Datasets_CHM",
        "img_size": 240,
        "ktype": "psi",
        "load": "pas_psi.pt",
        "thres": "img",
    }
)

model = chmnet.CHMNet(args["ktype"])
model.load_state_dict(torch.load(args["load"], map_location=torch.device("cpu")))
Evaluator.initialize(args["alpha"])
Geometry.initialize(img_size=args["img_size"])
model.eval()

# Transforms

chm_transform = transforms.Compose(
    [
        transforms.Resize(args["img_size"]),
        transforms.CenterCrop((args["img_size"], args["img_size"])),
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
    ]
)

chm_transform_plot = transforms.Compose(
    [
        transforms.Resize(args["img_size"]),
        transforms.CenterCrop((args["img_size"], args["img_size"])),
    ]
)

# A Helper Function
to_np = lambda x: x.data.to("cpu").numpy()

# Colors for Plotting
cmap = matplotlib.cm.get_cmap("Spectral")
rgba = cmap(0.5)
colors = []
for k in range(49):
    colors.append(cmap(k / 49.0))


# CHM MODEL
def run_chm(
    source_image,
    target_image,
    selected_points,
    number_src_points,
    chm_transform,
    display_transform,
):
    # Convert to Tensor
    src_img_tnsr = chm_transform(source_image).unsqueeze(0)
    tgt_img_tnsr = chm_transform(target_image).unsqueeze(0)

    # Selected_points = selected_points.T
    keypoints = torch.tensor(selected_points).unsqueeze(0)
    n_pts = torch.tensor(np.asarray([number_src_points]))

    # RUN CHM ------------------------------------------------------------------------
    with torch.no_grad():
        corr_matrix = model(src_img_tnsr, tgt_img_tnsr)
        prd_kps = Geometry.transfer_kps(corr_matrix, keypoints, n_pts, normalized=False)

    # VISUALIZATION
    src_points = keypoints[0].squeeze(0).squeeze(0).numpy()
    tgt_points = prd_kps[0].squeeze(0).squeeze(0).cpu().numpy()

    src_points_converted = []
    w, h = display_transform(source_image).size

    for x, y in zip(src_points[0], src_points[1]):
        src_points_converted.append(
            [int(x * w / args["img_size"]), int((y) * h / args["img_size"])]
        )

    src_points_converted = np.asarray(src_points_converted[:number_src_points])
    tgt_points_converted = []

    w, h = display_transform(target_image).size
    for x, y in zip(tgt_points[0], tgt_points[1]):
        tgt_points_converted.append(
            [int(((x + 1) / 2.0) * w), int(((y + 1) / 2.0) * h)]
        )

    tgt_points_converted = np.asarray(tgt_points_converted[:number_src_points])

    tgt_grid = []

    for x, y in zip(tgt_points[0], tgt_points[1]):
        tgt_grid.append([int(((x + 1) / 2.0) * 7), int(((y + 1) / 2.0) * 7)])

    # VISUALIZATION
    # PLOT
    fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(12, 8))

    # Source image plot
    ax[0].imshow(display_transform(source_image))
    ax[0].scatter(
        src_points_converted[:, 0],
        src_points_converted[:, 1],
        c="blue",
        edgecolors="white",
        s=50,
        label="Source points",
    )
    ax[0].set_title("Source Image with Selected Points")
    ax[0].set_xticks([])
    ax[0].set_yticks([])

    # Target image plot
    ax[1].imshow(display_transform(target_image))
    ax[1].scatter(
        tgt_points_converted[:, 0],
        tgt_points_converted[:, 1],
        c="red",
        edgecolors="white",
        s=50,
        label="Target points",
    )
    ax[1].set_title("Target Image with Corresponding Points")
    ax[1].set_xticks([])
    ax[1].set_yticks([])

    # Adding labels to points
    for i, (src, tgt) in enumerate(zip(src_points_converted, tgt_points_converted)):
        ax[0].text(*src, str(i), color="white", bbox=dict(facecolor="black", alpha=0.5))
        ax[1].text(*tgt, str(i), color="black", bbox=dict(facecolor="white", alpha=0.7))

    # Create a colormap that will generate 49 distinct colors
    cmap = plt.get_cmap(
        "gist_rainbow", 49
    )  # 'gist_rainbow' is just an example, you can choose another colormap

    # Drawing lines between corresponding source and target points
    # for i, (src, tgt) in enumerate(zip(src_points_converted, tgt_points_converted)):
    #     con = ConnectionPatch(
    #         xyA=tgt,
    #         xyB=src,
    #         coordsA="data",
    #         coordsB="data",
    #         axesA=ax[1],
    #         axesB=ax[0],
    #         color=cmap(i),
    #         linewidth=2,
    #     )
        # ax[1].add_artist(con)

    # Adding legend
    ax[0].legend(loc="lower right", bbox_to_anchor=(1, -0.075))
    ax[1].legend(loc="lower right", bbox_to_anchor=(1, -0.075))

    plt.tight_layout()
    plt.subplots_adjust(wspace=0.1, hspace=0.1)
    fig.suptitle("CHM Correspondences\nUsing $\it{pas\_psi.pt}$ Weights ", fontsize=16)
    return fig


# Wrapper
def generate_correspondences(
    sousrce_image, target_image, min_x=1, max_x=100, min_y=1, max_y=100
):
    A = np.linspace(min_x, max_x, 7)
    B = np.linspace(min_y, max_y, 7)
    point_list = list(product(A, B))
    new_points = np.asarray(point_list, dtype=np.float64).T
    return run_chm(
        sousrce_image,
        target_image,
        selected_points=new_points,
        number_src_points=49,
        chm_transform=chm_transform,
        display_transform=chm_transform_plot,
    )


with gr.Blocks() as demo:
    gr.Markdown(
        """
# Correspondence Matching with Convolutional Hough Matching Networks
Performs keypoint transform from a 7x7 gird on the source image to the target image. Use the sliders to adjust the grid.
[Original Paper](https://arxiv.org/abs/2103.16831) - [Github Page](https://github.com/juhongm999/chm)
    """
    )

    with gr.Row():
        # Add an Image component to display the source image.
        image1 = gr.Image(
            shape=(240, 240),
            type="pil",
            label="Source Image",
        )

        # Add an Image component to display the target image.
        image2 = gr.Image(
            shape=(240, 240),
            type="pil",
            label="Target Image",
        )

    with gr.Row():
        # Add a Slider component to adjust the minimum x-coordinate of the grid.
        min_x = gr.Slider(
            minimum=1,
            maximum=240,
            step=1,
            default=15,
            label="Min X",
        )

        # Add a Slider component to adjust the maximum x-coordinate of the grid.
        max_x = gr.Slider(
            minimum=1,
            maximum=240,
            step=1,
            default=215,
            label="Max X",
        )

        # Add a Slider component to adjust the minimum y-coordinate of the grid.
        min_y = gr.Slider(
            minimum=1,
            maximum=240,
            step=1,
            default=15,
            label="Min Y",
        )

        # Add a Slider component to adjust the maximum y-coordinate of the grid.
        max_y = gr.Slider(
            minimum=1,
            maximum=240,
            step=1,
            default=215,
            label="Max Y",
        )

    with gr.Row():
        output_plot = gr.Plot(
            type="plot",
            label="Output Plot",
        )

    gr.Examples(
        [
            ["./examples/sample1.jpeg", "./examples/sample2.jpeg", 17, 223, 17, 223],
            [
                "./examples/Red_Winged_Blackbird_0012_6015.jpg",
                "./examples/Red_Winged_Blackbird_0025_5342.jpg",
                17,
                223,
                17,
                223,
            ],
            [
                "./examples/Yellow_Headed_Blackbird_0026_8545.jpg",
                "./examples/Yellow_Headed_Blackbird_0020_8549.jpg",
                17,
                223,
                17,
                223,
            ],
        ],
        inputs=[
            image1,
            image2,
            min_x,
            max_x,
            min_y,
            max_y,
        ],
    )

    run_btn = gr.Button("Run")

    run_btn.click(
        generate_correspondences,
        inputs=[image1, image2, min_x, max_x, min_y, max_y],
        outputs=output_plot,
    )

    demo.launch(debug=True, enable_queue=False)