File size: 5,413 Bytes
8390f90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
from torch.utils.data import DataLoader
import torch
from model.base.geometry import Geometry
from common.evaluation import Evaluator
from common.logger import AverageMeter
from common.logger import Logger
from data import download
from model import chmnet
from matplotlib import pyplot as plt
from matplotlib.patches import ConnectionPatch
from PIL import Image
import numpy as np
import os
import torchvision
import torchvision.transforms as transforms
import torchvision.transforms.functional as TF
import torchvision.models as models
import torch.nn as nn
import torch.nn.functional as F
import random
import gradio as gr
# Downloading the Model
torchvision.datasets.utils.download_file_from_google_drive('1zsJRlAsoOn5F0GTCprSFYwDDfV85xDy6', '.', 'pas_psi.pt')
# Model Initialization
args = dict({
'alpha' : [0.05, 0.1],
'benchmark':'pfpascal',
'bsz':90,
'datapath':'../Datasets_CHM',
'img_size':240,
'ktype':'psi',
'load':'pas_psi.pt',
'thres':'img'
})
model = chmnet.CHMNet(args['ktype'])
model.load_state_dict(torch.load(args['load'], map_location=torch.device('cpu')))
Evaluator.initialize(args['alpha'])
Geometry.initialize(img_size=args['img_size'])
model.eval();
# Transforms
chm_transform = transforms.Compose(
[transforms.Resize(args['img_size']),
transforms.CenterCrop((args['img_size'], args['img_size'])),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],std=[0.229, 0.224, 0.225])])
chm_transform_plot = transforms.Compose(
[transforms.Resize(args['img_size']),
transforms.CenterCrop((args['img_size'], args['img_size']))])
# A Helper Function
to_np = lambda x: x.data.to('cpu').numpy()
# Colors for Plotting
cmap = matplotlib.cm.get_cmap('Spectral')
rgba = cmap(0.5)
colors = []
for k in range(49):
colors.append(cmap(k/49.0))
# CHM MODEL
def run_chm(source_image, target_image, selected_points, number_src_points , chm_transform, display_transform):
# Convert to Tensor
src_img_tnsr = chm_transform(source_image).unsqueeze(0)
tgt_img_tnsr = chm_transform(target_image).unsqueeze(0)
# Selected_points = selected_points.T
keypoints = torch.tensor(selected_points).unsqueeze(0)
n_pts = torch.tensor(np.asarray([number_src_points]))
# RUN CHM ------------------------------------------------------------------------
with torch.no_grad():
corr_matrix = model(src_img_tnsr, tgt_img_tnsr)
prd_kps = Geometry.transfer_kps(corr_matrix, keypoints, n_pts, normalized=False)
# VISUALIZATION
src_points = keypoints[0].squeeze(0).squeeze(0).numpy()
tgt_points = prd_kps[0].squeeze(0).squeeze(0).cpu().numpy()
src_points_converted = []
w, h = display_transform(source_image).size
for x,y in zip(src_points[0], src_points[1]):
src_points_converted.append([int(x*w/args['img_size']),int((y)*h/args['img_size'])])
src_points_converted = np.asarray(src_points_converted[:number_src_points])
tgt_points_converted = []
w, h = display_transform(target_image).size
for x, y in zip(tgt_points[0], tgt_points[1]):
tgt_points_converted.append([int(((x+1)/2.0)*w),int(((y+1)/2.0)*h)])
tgt_points_converted = np.asarray(tgt_points_converted[:number_src_points])
tgt_grid = []
for x, y in zip(tgt_points[0], tgt_points[1]):
tgt_grid.append([int(((x+1)/2.0)*7),int(((y+1)/2.0)*7)])
# PLOT
fig, ax = plt.subplots(nrows=1, ncols=2, figsize=(12, 8))
ax[0].imshow(display_transform(source_image))
ax[0].scatter(src_points_converted[:, 0], src_points_converted[:, 1], c=colors[:number_src_points])
ax[0].set_title('Source')
ax[0].set_xticks([])
ax[0].set_yticks([])
ax[1].imshow(display_transform(target_image))
ax[1].scatter(tgt_points_converted[:, 0], tgt_points_converted[:, 1], c=colors[:number_src_points])
ax[1].set_title('Target')
ax[1].set_xticks([])
ax[1].set_yticks([])
for TL in range(49):
ax[0].text(x=src_points_converted[TL][0], y=src_points_converted[TL][1], s=str(TL), fontdict=dict(color='red', size=10))
for TL in range(49):
ax[1].text(x=tgt_points_converted[TL][0], y=tgt_points_converted[TL][1], s=f'{str(TL)}', fontdict=dict(color='orange', size=8))
plt.tight_layout()
fig.suptitle('CHM Correspondences\nUsing $\it{pas\_psi.pt}$ Weights ', fontsize=16)
return fig
# Wrapper
def generate_correspondences(sousrce_image, target_image, min_x=1, max_x=100, min_y=1, max_y=100):
A = np.linspace(min_x, max_x, 7)
B = np.linspace(min_y, max_y, 7)
point_list = list(product(A, B))
new_points = np.asarray(point_list, dtype=np.float64).T
return run_chm(sousrce_image, target_image, selected_points=new_points, number_src_points=49, chm_transform=chm_transform, display_transform=chm_transform_plot)
# GRADIO APP
iface = gr.Interface(fn=generate_correspondences,
inputs=[gr.inputs.Image(shape=(240, 240), type='pil'),
gr.inputs.Image(shape=(240, 240), type='pil'),
gr.inputs.Slider(minimum=1, maximum=240, step=1, default=15, label='MinX'),
gr.inputs.Slider(minimum=1, maximum=240, step=1, default=215, label='MaxX'),
gr.inputs.Slider(minimum=1, maximum=240, step=1, default=15, label='MinY'),
gr.inputs.Slider(minimum=1, maximum=240, step=1, default=215, label='MaxY')], outputs="plot")
iface.launch() |