File size: 7,542 Bytes
affe617
 
 
 
 
 
 
 
 
afdf8c4
 
 
9f62051
 
 
 
afdf8c4
 
 
 
 
 
 
 
 
 
 
 
 
affe617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f7ab8f
 
 
 
 
 
affe617
 
 
 
 
 
 
 
 
 
 
6f7ab8f
 
affe617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f7ab8f
c0e9296
 
affe617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
afdf8c4
 
 
 
 
fb7d350
affe617
 
afdf8c4
 
 
9f62051
 
 
afdf8c4
affe617
 
fb7d350
 
 
afdf8c4
fb7d350
 
affe617
 
 
 
 
 
 
 
 
fb7d350
 
 
afdf8c4
 
 
 
 
affe617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8116c4
7eab0f8
f8116c4
 
 
 
 
0ff2e20
f8116c4
affe617
 
fb7d350
affe617
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import io
import os
import re
import tarfile

import anthropic
import gradio as gr
import requests

import arxiv


def replace_texttt(text):
    return re.sub(r"\\texttt\{(.*?)\}", r"*\1*", text)


def get_paper_info(paper_id):
    # Create a search query with the arXiv ID
    search = arxiv.Search(id_list=[paper_id])

    # Fetch the paper using its arXiv ID
    paper = next(search.results(), None)

    if paper is not None:
        # Return the paper's title and abstract
        return paper.title, paper.summary
    else:
        return None, None


def download_arxiv_source(paper_id):
    url = f"https://arxiv.org/e-print/{paper_id}"

    # Get the tar file
    response = requests.get(url)
    response.raise_for_status()

    # Open the tar file
    tar = tarfile.open(fileobj=io.BytesIO(response.content), mode="r")

    # Load all .tex files into memory, including their subdirectories
    tex_files = {
        member.name: tar.extractfile(member).read().decode("utf-8")
        for member in tar.getmembers()
        if member.name.endswith(".tex")
    }
    # Load all .tex files into memory, including their subdirectories
    tex_files = {
        member.name: tar.extractfile(member).read().decode("utf-8")
        for member in tar.getmembers()
        if member.isfile() and member.name.endswith(".tex")
    }

    # Pattern to match \input{filename} and \include{filename}
    pattern = re.compile(r"\\(input|include){(.*?)}")

    # Function to replace \input{filename} and \include{filename} with file contents
    def replace_includes(text):
        output = []
        for line in text.split("\n"):
            match = re.search(pattern, line)
            if match:
                command, filename = match.groups()
                # LaTeX automatically adds .tex extension for \input and \include commands
                if not filename.endswith(".tex"):
                    filename += ".tex"
                if filename in tex_files:
                    output.append(replace_includes(tex_files[filename]))
                else:
                    output.append(f"% {line} % FILE NOT FOUND")
            else:
                output.append(line)
        return "\n".join(output)

    if "main.tex" in tex_files:
        # Start with the contents of main.tex
        main_tex = replace_includes(tex_files["main.tex"])
    else:
        # No main.tex, concatenate all .tex files
        main_tex = "\n".join(replace_includes(text) for text in tex_files.values())

    return main_tex


class ContextualQA:
    def __init__(self, client, model="claude-v1.3-100k"):
        self.client = client
        self.model = model
        self.context = ""
        self.questions = []
        self.responses = []

    def load_text(self, text):
        self.context = text

    def ask_question(self, question):
        leading_prompt = "Here is the content of a paper:"
        trailing_prompt = "Now, answer the following question below. You can optionally use Markdown to format your answer."
        prompt = f"{anthropic.HUMAN_PROMPT} {leading_prompt}\n\n{self.context}\n\n{trailing_prompt}\n\n{anthropic.HUMAN_PROMPT} {question}\n\n{anthropic.AI_PROMPT}"
        response = self.client.completion_stream(
            prompt=prompt,
            stop_sequences=[anthropic.HUMAN_PROMPT],
            max_tokens_to_sample=6000,
            model=self.model,
            stream=False,
        )
        responses = [data for data in response]
        self.questions.append(question)
        self.responses.append(responses)
        return responses

    def clear_context(self):
        self.context = ""
        self.questions = []
        self.responses = []

    def __getstate__(self):
        state = self.__dict__.copy()
        del state["client"]
        return state

    def __setstate__(self, state):
        self.__dict__.update(state)
        self.client = None


def load_context(paper_id):
    try:
        latex_source = download_arxiv_source(paper_id)
    except Exception as e:
        return None, [(f"Error loading paper with id {paper_id}.", str(e))]

    client = anthropic.Client(api_key=os.environ["ANTHROPIC_API_KEY"])
    model = ContextualQA(client, model="claude-v1.3-100k")
    model.load_text(latex_source)

    # Usage
    title, abstract = get_paper_info(paper_id)
    # remove special symbols from title and abstract
    title = replace_texttt(title)
    abstract = replace_texttt(abstract)

    return (
        model,
        [
            (
                f"Load the paper with id {paper_id}.",
                f"\n**Title**: {title}\n\n**Abstract**: {abstract}\n\nPaper loaded, You can now ask questions.",
            )
        ],
    )


def answer_fn(model, question, chat_history):
    # if question is empty, tell user that they need to ask a question
    if question == "":
        chat_history.append(("No Question Asked", "Please ask a question."))
        return model, chat_history, ""

    client = anthropic.Client(api_key=os.environ["ANTHROPIC_API_KEY"])
    model.client = client

    try:
        response = model.ask_question(question)
    except Exception as e:
        chat_history.append(("Error Asking Question", str(e)))
        return model, chat_history, ""

    chat_history.append((question, response[0]["completion"]))
    return model, chat_history, ""


def clear_context():
    return []


with gr.Blocks(theme=gr.themes.Soft()) as demo:
    gr.Markdown(
        "# Explore ArXiv Papers in Depth with `claude-v1.3-100k` - Ask Questions and Receive Detailed Answers Instantly"
    )
    gr.Markdown(
        "Dive into the world of academic papers with our dynamic app, powered by the cutting-edge `claude-v1.3-100k` model. This app allows you to ask detailed questions about any ArXiv paper and receive direct answers from the paper's content. Utilizing a context length of 100k tokens, it provides an efficient and comprehensive exploration of complex research studies, making knowledge acquisition simpler and more interactive. (This text is generated by GPT-4 )"
    )

    gr.HTML(
        """<center>All the inputs are being sent to Anthropic's Claude endpoints. Please refer to <a href="https://legal.anthropic.com/#privacy">this link</a> for privacy policy.</center>"""
    )

    gr.HTML(
        """<center><a href="https://huggingface.co/spaces/taesiri/ClaudeReadsArxiv?duplicate=true"><img src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>Duplicate the Space and run securely with your Anthropic API Key </center>"""
    )
    

    with gr.Column():
        with gr.Row():
            paper_id_input = gr.Textbox(label="Enter Paper ID", value="2108.07258")
            btn_load = gr.Button("Load Paper")
            qa_model = gr.State()

        with gr.Column():
            chatbot = gr.Chatbot().style(color_map=("blue", "yellow"))
            question_txt = gr.Textbox(
                label="Question", lines=1, placeholder="Type your question here..."
            )
            btn_answer = gr.Button("Answer Question")

            btn_clear = gr.Button("Clear Chat")

    btn_load.click(load_context, inputs=[paper_id_input], outputs=[qa_model, chatbot])

    btn_answer.click(
        answer_fn,
        inputs=[qa_model, question_txt, chatbot],
        outputs=[qa_model, chatbot, question_txt],
    )

    question_txt.submit(
        answer_fn,
        inputs=[qa_model, question_txt, chatbot],
        outputs=[qa_model, chatbot, question_txt],
    )

    btn_clear.click(clear_context, outputs=[chatbot])

demo.launch()