File size: 6,428 Bytes
030a0f8
 
 
 
 
 
 
 
147f159
 
030a0f8
 
 
 
 
ffdcf9b
 
 
 
92ec35a
 
e7e873a
030a0f8
c3ce809
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf20d4a
 
 
 
ffdcf9b
c3ce809
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
030a0f8
 
7e5a783
ffdcf9b
 
 
 
 
 
 
 
 
 
 
 
92ec35a
ffdcf9b
92ec35a
c3ce809
030a0f8
c3ce809
 
 
030a0f8
 
c3ce809
 
030a0f8
147f159
47f9ff2
 
c3ce809
47f9ff2
 
 
c641c56
c3ce809
bf20d4a
c3ce809
 
cf0fa8b
92ec35a
 
 
 
 
 
71691d8
 
 
 
 
 
 
 
 
 
8e6ce41
cf0fa8b
030a0f8
b5251fc
030a0f8
87f68f3
 
 
 
 
cce302e
 
b5251fc
87f68f3
f8687db
d95e99d
030a0f8
367e85c
030a0f8
 
 
 
 
b5251fc
030a0f8
 
96c87f9
030a0f8
 
 
 
d320fdd
47f9ff2
 
 
 
 
 
 
d320fdd
e15d353
030a0f8
 
47f9ff2
 
53cf441
 
47f9ff2
 
333ca76
53cf441
030a0f8
 
8aae6e9
 
 
 
7e5a783
d320fdd
8aae6e9
030a0f8
9dc62b8
 
 
 
030a0f8
d2c745e
030a0f8
 
 
 
 
47f9ff2
8aae6e9
030a0f8
d2c745e
030a0f8
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import os
from typing import Tuple

import streamlit as st

import torch

import transformers

from transformers import AutoConfig
import tokenizers

from sampling import CAIFSampler, TopKWithTemperatureSampler
from generator import Generator

import pickle

from plotly import graph_objects as go

import numpy as np

device = "cuda" if torch.cuda.is_available() else "cpu"

ATTRIBUTE_MODELS = {
    "Russian": (
        "cointegrated/rubert-tiny-toxicity",
        'tinkoff-ai/response-quality-classifier-tiny',
        'tinkoff-ai/response-quality-classifier-base',
        'tinkoff-ai/response-quality-classifier-large',
        "SkolkovoInstitute/roberta_toxicity_classifier",
        "SkolkovoInstitute/russian_toxicity_classifier"
    ),
    "English": (
        "unitary/toxic-bert",
    )
}

LANGUAGE_MODELS = {
    "Russian": (
        'sberbank-ai/rugpt3small_based_on_gpt2',
        "sberbank-ai/rugpt3large_based_on_gpt2"
    ),
    "English": ("gpt2", "distilgpt2", "EleutherAI/gpt-neo-1.3B")
}

ATTRIBUTE_MODEL_LABEL = {
    "Russian": 'Выберите модель классификации',
    "English": "Choose attribute model"
}

LM_LABEL = {
    "English": "Choose language model",
    "Russian": "Выберите языковую модель"
}

ATTRIBUTE_LABEL = {
    "Russian": "Веберите нужный атрибут текста",
    "English": "Choose desired attribute",
}

TEXT_PROMPT_LABEL = {
    "English": "Text prompt",
    "Russian": "Начало текста"
}

PROMPT_EXAMPLE = {
    "English": "Hello, today I",
    "Russian": "Привет, сегодня я"
}


def main():
    st.header("CAIF")
    with open("entropy_cdf.pkl", "rb") as inp:
        x_s, y_s = pickle.load(inp)
    scatter = go.Scatter({
        "x": x_s,
        "y": y_s,
        "name": "GPT2",
        "mode": "lines",
    }
    )
    layout = go.Layout({
        "yaxis": {"title": "CAIF step probability"},
        "xaxis": {"title": "Entropy threshold"},
        "template": "plotly_white",
    })

    language = st.selectbox("Language", ("English", "Russian"))
    cls_model_name = st.selectbox(
        ATTRIBUTE_MODEL_LABEL[language],
        ATTRIBUTE_MODELS[language]

    )
    lm_model_name = st.selectbox(
        LM_LABEL[language],
        LANGUAGE_MODELS[language]
    )
    cls_model_config = AutoConfig.from_pretrained(cls_model_name)
    if cls_model_config.problem_type == "multi_label_classification":
        label2id = cls_model_config.label2id
        label_key = st.selectbox(ATTRIBUTE_LABEL[language], label2id.keys())
        target_label_id = label2id[label_key]
    else:
        label2id = cls_model_config.label2id
        print(list(label2id.keys()))
        label_key = st.selectbox(ATTRIBUTE_LABEL[language], [list(label2id.keys())[-1]])
        target_label_id = 1
    prompt = st.text_input(TEXT_PROMPT_LABEL[language], PROMPT_EXAMPLE[language])
    alpha = st.slider("Alpha", min_value=-10, max_value=10, step=1, value=0)
    entropy_threshold = st.slider("Entropy threshold", min_value=0., max_value=10., step=.1, value=2.)
    plot_idx = np.argmin(np.abs(entropy_threshold - x_s))
    scatter_tip = go.Scatter({
        "x": [x_s[plot_idx]],
        "y": [y_s[plot_idx]],
        "mode": "markers"
    })
    scatter_tip_lines = go.Scatter({
        "x": [0, x_s[plot_idx]],
        "y": [y_s[plot_idx]] * 2,
        "mode": "lines",
        "line": {
            "color": "grey",
            "dash": "dash"
        }
    })
    figure = go.Figure(data=[scatter, scatter_tip, scatter_tip_lines], layout=layout)
    figure.update_layout(paper_bgcolor="#FFFFFF", plot_bgcolor='#FFFFFF', showlegend=False)
    st.plotly_chart(figure, use_container_width=True)
    auth_token = os.environ.get('TOKEN') or True
    fp16 = st.checkbox("FP16", value=True)
    with st.spinner('Running inference...'):
        text = inference(
            lm_model_name=lm_model_name,
            cls_model_name=cls_model_name,
            prompt=prompt,
            alpha=alpha,
            target_label_id=target_label_id,
            entropy_threshold=entropy_threshold,
            fp16=fp16,
        )
    st.subheader("Generated text:")
    st.markdown(text)

@st.cache(hash_funcs={tokenizers.Tokenizer: lambda lm_tokenizer: hash(lm_tokenizer.to_str)}, allow_output_mutation=True)
def load_generator(lm_model_name: str) -> Generator:
    with st.spinner('Loading language model...'):
        generator = Generator(lm_model_name=lm_model_name, device=device)
        return generator

#@st.cache(hash_funcs={tokenizers.Tokenizer: lambda lm_tokenizer: hash(lm_tokenizer.to_str)}, allow_output_mutation=True)
def load_sampler(cls_model_name, lm_tokenizer):
    with st.spinner('Loading classifier model...'):
        sampler = CAIFSampler(classifier_name=cls_model_name, lm_tokenizer=lm_tokenizer, device=device)
        return sampler


@st.cache
def inference(
        lm_model_name: str,
        cls_model_name: str,
        prompt: str,
        fp16: bool = True,
        alpha: float = 5,
        target_label_id: int = 0,
        entropy_threshold: float = 0
) -> str:
    torch.set_grad_enabled(False)
    generator = load_generator(lm_model_name=lm_model_name)
    lm_tokenizer = transformers.AutoTokenizer.from_pretrained(lm_model_name)
    if alpha != 0:
        caif_sampler = load_sampler(cls_model_name=cls_model_name, lm_tokenizer=lm_tokenizer)
        if entropy_threshold < 0.05:
            entropy_threshold = None
    else:
        caif_sampler = None
        entropy_threshold = None

    generator.set_caif_sampler(caif_sampler)
    ordinary_sampler = TopKWithTemperatureSampler()
    kwargs = {
        "top_k": 20,
        "temperature": 1.0,
        "top_k_classifier": 100,
        "classifier_weight": alpha,
        "target_cls_id": target_label_id
    }
    generator.set_ordinary_sampler(ordinary_sampler)
    if device == "cpu":
        autocast = torch.cpu.amp.autocast
    else:
        autocast = torch.cuda.amp.autocast
    with autocast(fp16):
        print(f"Generating for prompt: {prompt}")
        sequences, tokens = generator.sample_sequences(
            num_samples=1,
            input_prompt=prompt,
            max_length=20,
            caif_period=1,
            entropy=entropy_threshold,
            **kwargs
        )
        print(f"Output for prompt: {sequences}")
    return sequences[0]


if __name__ == "__main__":
    main()