File size: 7,335 Bytes
e10da38
 
 
 
 
 
 
 
ebd9cdc
 
e10da38
 
 
 
 
 
 
 
 
 
 
 
 
3f12c93
e10da38
42e512c
 
e10da38
 
a6b395f
e10da38
a6b395f
e10da38
 
 
 
 
0b4669a
e10da38
a6b395f
 
 
 
 
 
 
 
 
 
 
 
 
 
e10da38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b80d994
e10da38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7374f63
e10da38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7374f63
e10da38
b80d994
e10da38
b80d994
e10da38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56cf08e
e10da38
 
 
 
 
 
 
 
 
 
 
 
 
56cf08e
e10da38
 
 
 
 
 
 
 
42e512c
e10da38
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import torch
import torchvision
import numpy as np

import os
from omegaconf import OmegaConf
from PIL import Image 

import tempfile

from utils.app_utils import (
    remove_background, 
    resize_foreground, 
    set_white_background,
    resize_to_128,
    to_tensor,
    get_source_camera_v2w_rmo_and_quats,
    get_target_cameras,
    export_to_obj)

import imageio

from scene.gaussian_predictor import GaussianSplatPredictor
# from gaussian_renderer import render_predicted

import gradio as gr

import rembg

from huggingface_hub import hf_hub_download

def main():

    if torch.cuda.is_available():
        device = "cuda:0"
    else:
        device = "cpu"
    # torch.cuda.set_device(device)

    model_cfg = OmegaConf.load(
        os.path.join(
            os.path.dirname(os.path.abspath(__file__)), 
                    "config.yaml"
                    ))

    model_path = hf_hub_download(repo_id="szymanowiczs/splatter-image-multi-category-v1", 
                                 filename="model_latest.pth")

    
    model = GaussianSplatPredictor(model_cfg)

    ckpt_loaded = torch.load(model_path, map_location=device)
    model.load_state_dict(ckpt_loaded["model_state_dict"])
    model.to(device)

    # ============= image preprocessing =============
    rembg_session = rembg.new_session()

    def check_input_image(input_image):
        if input_image is None:
            raise gr.Error("No image uploaded!")

    def preprocess(input_image, preprocess_background=True, foreground_ratio=0.65):
        # 0.7 seems to be a reasonable foreground ratio
        if preprocess_background:
            image = input_image.convert("RGB")
            image = remove_background(image, rembg_session)
            image = resize_foreground(image, foreground_ratio)
            image = set_white_background(image)
        else:
            image = input_image
            if image.mode == "RGBA":
                image = set_white_background(image)
        image = resize_to_128(image)
        return image

    ply_out_path = f'./mesh.ply'

    def reconstruct_and_export(image):
        """
        Passes image through model, outputs reconstruction in form of a dict of tensors.
        """
        image = to_tensor(image).to(device)
        view_to_world_source, rot_transform_quats = get_source_camera_v2w_rmo_and_quats()
        view_to_world_source = view_to_world_source.to(device)
        rot_transform_quats = rot_transform_quats.to(device)

        reconstruction_unactivated = model(
            image.unsqueeze(0).unsqueeze(0),
            view_to_world_source,
            rot_transform_quats,
            None,
            activate_output=False)

        """reconstruction = {k: v[0].contiguous() for k, v in reconstruction_unactivated.items()}
        reconstruction["scaling"] = model.scaling_activation(reconstruction["scaling"])
        reconstruction["opacity"] = model.opacity_activation(reconstruction["opacity"])

        # render images in a loop
        world_view_transforms, full_proj_transforms, camera_centers = get_target_cameras()
        background = torch.tensor([1, 1, 1] , dtype=torch.float32, device=device)
        loop_renders = []
        t_to_512 = torchvision.transforms.Resize(512, interpolation=torchvision.transforms.InterpolationMode.NEAREST)
        for r_idx in range( world_view_transforms.shape[0]):
            image = render_predicted(reconstruction,
                                     world_view_transforms[r_idx].to(device),
                                     full_proj_transforms[r_idx].to(device), 
                                     camera_centers[r_idx].to(device),
                                     background,
                                     model_cfg,
                                     focals_pixels=None)["render"]
            image = t_to_512(image)
            loop_renders.append(torch.clamp(image * 255, 0.0, 255.0).detach().permute(1, 2, 0).cpu().numpy().astype(np.uint8))
        loop_out_path = os.path.join(os.path.dirname(ply_out_path), "loop.mp4")
        imageio.mimsave(loop_out_path, loop_renders, fps=25)"""
        # export reconstruction to ply
        export_to_obj(reconstruction_unactivated, ply_out_path)

        return ply_out_path

    with gr.Blocks() as demo:
        gr.Markdown(
            """

            # Splatter Image Demo
            [Splatter Image](https://github.com/szymanowiczs/splatter-image) (CVPR 2024) is a fast, super cheap to train method for object 3D reconstruction from a single image. 
            The model used in the demo was trained on **Objaverse-LVIS on 2 A6000 GPUs for 3.5 days**.
            On NVIDIA V100 GPU, reconstruction can be done at 38FPS and rendering at 588FPS.
            Upload an image of an object to see how the Splatter Image does.
            
            **Comments:**
            1. The first example you upload should take about 4.5 seconds (with preprocessing, saving and overhead), the following take about 1.5s.
            2. The model does not work well on photos of humans.
            3. The 3D viewer shows a .ply mesh extracted from a mix of 3D Gaussians. Artefacts might show - see video for more faithful results.
            4. Best results are achieved on the datasets described in the [repository](https://github.com/szymanowiczs/splatter-image) using that code. This demo is experimental.
            5. Our model might not be better than some state-of-the-art methods, but it is of comparable quality and is **much** cheaper to train and run.
            """
            )
        with gr.Row(variant="panel"):
            with gr.Column():
                with gr.Row():
                    input_image = gr.Image(
                        label="Input Image",
                        image_mode="RGBA",
                        sources="upload",
                        type="pil",
                        elem_id="content_image",
                    )
                    processed_image = gr.Image(label="Processed Image", interactive=False)
                with gr.Row():
                    with gr.Group():
                        preprocess_background = gr.Checkbox(
                            label="Remove Background", value=True
                        )
                with gr.Row():
                    submit = gr.Button("Generate", elem_id="generate", variant="primary")
            with gr.Column():
                with gr.Row():
                    with gr.Tab("Reconstruction"):
                        with gr.Column():
                            # output_video = gr.Video(value=None, width=512, label="Rendered Video", autoplay=True)
                            output_model = gr.Model3D(
                                height=512,
                                label="Output Model",
                                interactive=False
                            )

        submit.click(fn=check_input_image, inputs=[input_image]).success(
            fn=preprocess,
            inputs=[input_image, preprocess_background],
            outputs=[processed_image],
        ).success(
            fn=reconstruct_and_export,
            inputs=[processed_image],
            outputs=[output_model],
        )

    demo.queue(max_size=1)
    demo.launch()


if __name__ == "__main__":
    main()

# gradio app interface