File size: 4,922 Bytes
7900c16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
"""
  This script provides an example to wrap TencentPretrain for NER inference.
"""
import sys
import os
import argparse
import json
import torch
import torch.nn as nn

tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)

from tencentpretrain.utils.config import load_hyperparam
from tencentpretrain.utils.constants import *
from tencentpretrain.utils.tokenizers import *
from tencentpretrain.model_loader import load_model
from tencentpretrain.opts import infer_opts
from finetune.run_ner import NerTagger


def read_dataset(args, path):
    dataset, columns = [], {}
    with open(path, mode="r", encoding="utf-8") as f:
        for line_id, line in enumerate(f):
            if line_id == 0:
                for i, column_name in enumerate(line.rstrip("\r\n").split("\t")):
                    columns[column_name] = i
                continue
            line = line.rstrip("\r\n").split("\t")
            text_a = line[columns["text_a"]]
            src = args.tokenizer.convert_tokens_to_ids(args.tokenizer.tokenize(text_a))
            seg = [1] * len(src)

            if len(src) > args.seq_length:
                src = src[:args.seq_length]
                seg = seg[:args.seq_length]
            PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0]
            while len(src) < args.seq_length:
                src.append(PAD_ID)
                seg.append(0)
            dataset.append([src, seg])

    return dataset


def batch_loader(batch_size, src, seg):
    instances_num = src.size()[0]
    for i in range(instances_num // batch_size):
        src_batch = src[i * batch_size : (i + 1) * batch_size, :]
        seg_batch = seg[i * batch_size : (i + 1) * batch_size, :]
        yield src_batch, seg_batch
    if instances_num > instances_num // batch_size * batch_size:
        src_batch = src[instances_num // batch_size * batch_size :, :]
        seg_batch = seg[instances_num // batch_size * batch_size :, :]
        yield src_batch, seg_batch


def main():
    parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)

    infer_opts(parser)

    parser.add_argument("--vocab_path", default=None, type=str,
                        help="Path of the vocabulary file.")
    parser.add_argument("--spm_model_path", default=None, type=str,
                        help="Path of the sentence piece model.")
    parser.add_argument("--label2id_path", type=str, required=True,
                        help="Path of the label2id file.")
    parser.add_argument("--crf_target", action="store_true",
                        help="Use CRF loss as the target function or not, default False.")
    
    args = parser.parse_args()

    # Load the hyperparameters of the config file.
    args = load_hyperparam(args)

    with open(args.label2id_path, mode="r", encoding="utf-8") as f:
        l2i = json.load(f)
        print("Labels: ", l2i)
        l2i["[PAD]"] = len(l2i)

    i2l = {}
    for key, value in l2i.items():
        i2l[value] = key

    args.l2i = l2i

    args.labels_num = len(l2i)

    # Load tokenizer.
    args.tokenizer = SpaceTokenizer(args)

    # Build sequence labeling model.
    model = NerTagger(args)
    model = load_model(model, args.load_model_path)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model = model.to(device)
    if torch.cuda.device_count() > 1:
        print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
        model = torch.nn.DataParallel(model)
    
    instances = read_dataset(args, args.test_path)

    src = torch.LongTensor([ins[0] for ins in instances])
    seg = torch.LongTensor([ins[1] for ins in instances])

    instances_num = src.size(0)
    batch_size = args.batch_size

    print("The number of prediction instances: ", instances_num)

    model.eval()

    with open(args.prediction_path, mode="w", encoding="utf-8") as f:
        f.write("pred_label" + "\n")
        for i, (src_batch, seg_batch) in enumerate(batch_loader(batch_size, src, seg)):
            src_batch = src_batch.to(device)
            seg_batch = seg_batch.to(device)
            with torch.no_grad():
                _, pred = model(src_batch, None, seg_batch)

            # Storing sequence length of instances in a batch.
            seq_length_batch = []
            for seg in seg_batch.cpu().numpy().tolist():
                for j in range(len(seg) - 1, -1, -1):
                    if seg[j] != 0:
                        break
                seq_length_batch.append(j+1)
            pred = pred.cpu().numpy().tolist()
            for j in range(0, len(pred), args.seq_length):
                for label_id in pred[j: j + seq_length_batch[j // args.seq_length]]:
                    f.write(i2l[label_id] + " ")
                f.write("\n")
        

if __name__ == "__main__":
    main()