File size: 6,210 Bytes
7900c16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import torch
import torch.nn as nn
from tencentpretrain.utils.misc import *


class RnnEncoder(nn.Module):
    """
    RNN encoder.
    """
    def __init__(self, args):
        super(RnnEncoder, self).__init__()

        self.bidirectional = args.bidirectional
        if self.bidirectional:
            assert args.hidden_size % 2 == 0
            self.hidden_size = args.hidden_size // 2
        else:
            self.hidden_size = args.hidden_size
        self.layers_num = args.layers_num

        self.rnn = nn.RNN(input_size=args.emb_size,
                          hidden_size=self.hidden_size,
                          num_layers=args.layers_num,
                          dropout=args.dropout,
                          batch_first=True,
                          bidirectional=self.bidirectional)

        self.drop = nn.Dropout(args.dropout)

    def forward(self, emb, _):
        self.rnn.flatten_parameters()
        hidden = self.init_hidden(emb.size(0), emb.device)
        output, hidden = self.rnn(emb, hidden)
        output = self.drop(output)
        return output

    def init_hidden(self, batch_size, device):
        if self.bidirectional:
            return torch.zeros(self.layers_num*2, batch_size, self.hidden_size, device=device)
        else:
            return torch.zeros(self.layers_num, batch_size, self.hidden_size, device=device)


class LstmEncoder(RnnEncoder):
    """
    LSTM encoder.
    """
    def __init__(self, args):
        super(LstmEncoder, self).__init__(args)

        self.rnn = nn.LSTM(input_size=args.emb_size,
                           hidden_size=self.hidden_size,
                           num_layers=args.layers_num,
                           dropout=args.dropout,
                           batch_first=True,
                           bidirectional=self.bidirectional)

    def init_hidden(self, batch_size, device):
        if self.bidirectional:
            return (torch.zeros(self.layers_num*2, batch_size, self.hidden_size, device=device),
                    torch.zeros(self.layers_num*2, batch_size, self.hidden_size, device=device))
        else:
            return (torch.zeros(self.layers_num, batch_size, self.hidden_size, device=device),
                    torch.zeros(self.layers_num, batch_size, self.hidden_size, device=device))


class GruEncoder(RnnEncoder):
    """
    GRU encoder.
    """
    def __init__(self, args):
        super(GruEncoder, self).__init__(args)

        self.rnn = nn.GRU(input_size=args.emb_size,
                          hidden_size=self.hidden_size,
                          num_layers=args.layers_num,
                          dropout=args.dropout,
                          batch_first=True,
                          bidirectional=self.bidirectional)


class BirnnEncoder(nn.Module):
    """
    Bi-directional RNN encoder.
    """
    def __init__(self, args):
        super(BirnnEncoder, self).__init__()

        assert args.hidden_size % 2 == 0
        self.hidden_size = args.hidden_size // 2
        self.layers_num = args.layers_num

        self.rnn_forward = nn.RNN(input_size=args.emb_size,
                           hidden_size=self.hidden_size,
                           num_layers=args.layers_num,
                           dropout=args.dropout,
                           batch_first=True)

        self.rnn_backward = nn.RNN(input_size=args.emb_size,
                           hidden_size=self.hidden_size,
                           num_layers=args.layers_num,
                           dropout=args.dropout,
                           batch_first=True)

        self.drop = nn.Dropout(args.dropout)
    
    def forward(self, emb, _):
        # Forward.
        self.rnn_forward.flatten_parameters()
        emb_forward = emb
        hidden_forward = self.init_hidden(emb_forward.size(0), emb_forward.device)
        output_forward, hidden_forward = self.rnn_forward(emb_forward, hidden_forward)
        output_forward = self.drop(output_forward)

        # Backward.
        self.rnn_backward.flatten_parameters()
        emb_backward = flip(emb, 1)
        hidden_backward = self.init_hidden(emb_backward.size(0), emb_backward.device)
        output_backward, hidden_backward = self.rnn_backward(emb_backward, hidden_backward)
        output_backward = self.drop(output_backward)
        output_backward = flip(output_backward, 1)

        return torch.cat([output_forward, output_backward], 2)

    def init_hidden(self, batch_size, device):
        return torch.zeros(self.layers_num, batch_size, self.hidden_size, device=device)


class BilstmEncoder(BirnnEncoder):
    """
     Bi-directional LSTM encoder.
     """
    def __init__(self, args):
        super(BilstmEncoder, self).__init__(args)

        self.rnn_forward = nn.LSTM(input_size=args.emb_size,
                           hidden_size=self.hidden_size,
                           num_layers=args.layers_num,
                           dropout=args.dropout,
                           batch_first=True)

        self.rnn_backward = nn.LSTM(input_size=args.emb_size,
                           hidden_size=self.hidden_size,
                           num_layers=args.layers_num,
                           dropout=args.dropout,
                           batch_first=True)

    def init_hidden(self, batch_size, device):
        return (torch.zeros(self.layers_num, batch_size, self.hidden_size, device=device),
                torch.zeros(self.layers_num, batch_size, self.hidden_size, device=device))


class BigruEncoder(BirnnEncoder):
    """
     Bi-directional GRU encoder.
     """
    def __init__(self, args):
        super(BigruEncoder, self).__init__(args)

        self.rnn_forward = nn.GRU(input_size=args.emb_size,
                           hidden_size=self.hidden_size,
                           num_layers=args.layers_num,
                           dropout=args.dropout,
                           batch_first=True)

        self.rnn_backward = nn.GRU(input_size=args.emb_size,
                           hidden_size=self.hidden_size,
                           num_layers=args.layers_num,
                           dropout=args.dropout,
                           batch_first=True)