File size: 2,438 Bytes
ec21955 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 |
import warnings
# ζεΆζζθ¦ε
warnings.filterwarnings('ignore')
import os
import sys
#sys.path.append(os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))))
from Smurfs.inference.smurfs_worker import smurfs_hotpot_worker, smurfs_worker
# from Smurfs.tools.tool_env import HotpotToolEnv
from Smurfs.tools.tool_env import tool_env
from Smurfs.model.openai_model.openai_model import OpenAI_Model, OpenRouter_Model
from Smurfs.agents.answer_agent.answer import answer_agent
from Smurfs.agents.executor_agent.executor import executor_agent
from Smurfs.agents.planning_agent.planner import hotpot_planning_agent
from Smurfs.agents.verifier_agent.verifier import verifier_agent
import json
import threading
import joblib
from tqdm import tqdm
import time
def run(worker, query, query_id):
# global lock
final_answer, output_file_ele, solution_file_ele = worker.run(query, query_id)
# lock.acquire()
worker.save_solution(output_file_ele, solution_file_ele, query_id)
# lock.release()
return final_answer
def cli_run(query, worker):
pre = run(worker, query, 0)
return pre
if __name__ == '__main__':
# model_name = "mistralai/mistral-7b-instruct-v0.2"
model_name = "mistralai/mistral-7b-instruct-v0.2"
method_name = "cli_inference"
tool_doc_path = "Smurfs/tools/math_search.json"
# llm = OpenAI_Model(model_name=model_name)
llm = OpenRouter_Model(model_name=model_name)
# parser_llm = OpenAI_Model(model_name="gpt-4")
with open(tool_doc_path, "r") as f:
available_tools = json.load(f)
test_set = "cli"
output_dir = f"data/{method_name}/{test_set}/answer"
results_dir = f"data/{method_name}/{test_set}/results.json"
if not os.path.exists(f"data/{method_name}/{test_set}/parser_log"):
os.makedirs(f"data/{method_name}/{test_set}/parser_log")
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# HP_answer_agent = answer_agent(llm=parser_llm, logger_dir=f"data/{method_name}/{test_set}/parser_log")
# worker = smurfs_hotpot_worker(available_tools, HotpotToolEnv, llm, method_name, test_set, answer_agent, executor_agent,hotpot_planning_agent, verifier_agent)
worker = smurfs_worker(available_tools, tool_env, llm, method_name, test_set, answer_agent, executor_agent,hotpot_planning_agent, verifier_agent)
query = input("Please Enter Your Task: ")
cli_run(query, worker)
|