File size: 7,582 Bytes
bc3e180 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from einops import rearrange
from src.utils import misc as utils
def apply_gain(x, gain, fn=None):
gain = fn(gain) if fn is not None else gain
x_list = x.chunk(len(gain), -1)
x_list = [gain[i] * x_i for i, x_i in enumerate(x_list)]
return torch.cat(x_list, dim=-1)
class FMBlock(nn.Module):
def __init__(self, input_dim, embed_dim, num_features):
super().__init__()
concat_size = embed_dim * num_features + embed_dim
feature_dim = embed_dim * num_features
self.rff2 = RFF2(input_dim, embed_dim//2)
self.tmlp = mlp(concat_size, feature_dim, 5)
self.proj = nn.Linear(concat_size, 2*input_dim)
self.activation = nn.GLU(dim=-1)
gain_in = torch.randn(num_features) / 2
gain_out = torch.Tensor([0.1])
self.register_parameter('gain_in', nn.Parameter(gain_in, requires_grad=True))
self.register_parameter('gain_out', nn.Parameter(gain_out, requires_grad=True))
def forward(self, input, feature, slider, omega):
''' input : (B T input_dim)
feature: (B T feature_dim)
slider : (B T 1)
'''
_input = input / (1.3*math.pi) - 1
_input = self.rff2(_input)
feature = apply_gain(feature, self.gain_in, torch.tanh)
x = torch.cat((_input, feature), dim=-1)
x = torch.cat((self.tmlp(x), _input), dim=-1)
x = self.activation(self.proj(x))
gate = torch.tanh((slider - 1) * self.gain_out)
return input + omega * x * gate
class AMBlock(nn.Module):
def __init__(self, input_dim, embed_dim, num_features):
super().__init__()
concat_size = embed_dim * num_features + embed_dim
feature_dim = embed_dim * num_features
self.rff2 = RFF2(input_dim, embed_dim//2)
self.tmlp = mlp(concat_size, feature_dim, 5)
self.proj = nn.Linear(concat_size, 2*input_dim)
self.activation = nn.GLU(dim=-1)
gain_in = torch.randn(num_features) / 2
self.register_parameter('gain_in', nn.Parameter(gain_in, requires_grad=True))
def forward(self, input, feature, slider):
''' input : (B T input_dim)
feature: (B T feature_dim)
slider : (B T 1)
'''
_input = input * 110 - 0.55
_input = self.rff2(_input)
feature = apply_gain(feature, self.gain_in, torch.tanh)
x = torch.cat((_input, feature), dim=-1)
x = torch.cat((self.tmlp(x), _input), dim=-1)
x = self.activation(self.proj(x))
return input * (1 + x)
class ModBlock(nn.Module):
def __init__(self, input_dim, feature_dim, embed_dim):
super().__init__()
cat_size = 1+feature_dim
self.tmlp = mlp(cat_size, feature_dim, 2)
self.proj = nn.Linear(cat_size, 2)
self.activation = nn.GLU(dim=-1)
def forward(self, input, feature, slider):
''' input : (B T input_dim)
feature: (B T feature_dim)
slider : (B T 1)
'''
input = input.unsqueeze(-1) # (B T input_dim 1)
feature = feature.unsqueeze(-2).repeat(1,1,input.size(-2),1)
x = torch.cat((input, feature), dim=-1)
x = torch.cat((self.tmlp(x), input), dim=-1)
x = self.activation(self.proj(x))
return (input * (1 + x)).squeeze(-1)
def mlp(in_size, hidden_size, n_layers):
channels = [in_size] + (n_layers) * [hidden_size]
net = []
for i in range(n_layers):
net.append(nn.Linear(channels[i], channels[i + 1]))
#net.append(nn.LayerNorm(channels[i + 1]))
net.append(nn.PReLU())
return nn.Sequential(*net)
class RFF2(nn.Module):
""" Random Fourier Features Module """
def __init__(self, input_dim, embed_dim, scale=1.):
super().__init__()
#N = torch.randn(input_dim, embed_dim)
N = torch.ones((input_dim, embed_dim)) / input_dim / embed_dim
N = nn.Parameter(N, requires_grad=False)
e = torch.Tensor([scale])
e = nn.Parameter(e, requires_grad=True)
self.register_buffer('N', N)
self.register_parameter('e', e)
def forward(self, x):
''' x: (Bs, Nt, input_dim)
-> (Bs, Nt, embed_dim)
'''
B = self.e * self.N
x_embd = utils.fourier_feature(x, B)
return x_embd
class RFF(nn.Module):
""" Random Fourier Features Module """
def __init__(self, scales, embed_dim):
super().__init__()
input_dim = len(scales)
N = torch.randn(input_dim, embed_dim)
N = nn.Parameter(N, requires_grad=False)
e = torch.Tensor(scales).view(-1,1)
e = nn.Parameter(e, requires_grad=True)
self.register_buffer('N', N)
self.register_parameter('e', e)
def forward(self, x):
''' x: (Bs, Nt, input_dim)
-> (Bs, Nt, input_dim*embed_dim)
'''
xs = x.chunk(self.N.size(0), -1) # (Bs, Nt, 1) * input_dim
Ns = self.N.chunk(self.N.size(0), 0) # (1, embed_dim) * input_dim
Bs = [torch.pow(10, self.e[i]) * N for i, N in enumerate(Ns)]
x_embd = [utils.fourier_feature(xs[i], B) for i, B in enumerate(Bs)]
return torch.cat(x_embd, dim=-1)
class ModeEstimator(nn.Module):
def __init__(self, n_modes, hidden_dim, kappa_scale=None, gamma_scale=None, inharmonic=True, sr=48000):
super().__init__()
self.sr = sr
self.kappa_scale = kappa_scale
self.gamma_scale = gamma_scale
self.rff = RFF([1.]*5, hidden_dim//2)
self.a_mlp = mlp(5*hidden_dim, hidden_dim, 2)
self.a_proj = nn.Linear(hidden_dim, n_modes)
self.tanh = nn.Tanh()
if inharmonic:
self.f_mlp = mlp(5*hidden_dim, hidden_dim, 2)
self.f_proj = nn.Linear(hidden_dim, n_modes)
self.sigmoid = nn.Sigmoid()
else:
self.f_mlp = None
self.f_proj = None
self.sigmoid = nn.Sigmoid()
def forward(self, u_0, x_p, kappa, gamma):
''' u_0 : (b, 1, x)
x_p : (b, 1, 1)
kappa : (b, 1, 1)
gamma : (b, 1, 1)
'''
p_x = torch.argmax(u_0, dim=-1, keepdim=True) / 255. # (b, 1, 1)
p_a = torch.max(u_0, dim=-1, keepdim=True).values / 0.02 # (b, 1, 1)
kappa = self.normalize_kappa(kappa)
gamma = self.normalize_gamma(gamma)
con = torch.cat((p_x, p_a, x_p, kappa, gamma), dim=-1) # (b, 1, 5)
con = self.rff(con) # (b, 1, 3*hidden_dim)
mode_amps = self.a_mlp(con) # (b, 1, k)
mode_amps = self.tanh(1e-3 * self.a_proj(mode_amps)) # (b, 1, m)
if self.f_mlp is not None:
mode_freq = self.f_mlp(con) # (b, 1, k)
mode_freq = 0.3 * self.sigmoid(self.f_proj(mode_freq)) # (b, 1, m)
mode_freq = mode_freq.cumsum(-1)
else:
int_mults = torch.ones_like(mode_amps).cumsum(-1) # (b, 1, k)
omega = gamma / self.sr * (2*math.pi)
mode_freq = omega * int_mults
return mode_amps, mode_freq
def normalize_gamma(self, x):
if self.gamma_scale is not None:
minval = min(self.gamma_scale)
denval = max(self.gamma_scale) - minval
x = (x - minval) / denval
return x
def normalize_kappa(self, x):
if self.kappa_scale is not None:
minval = min(self.kappa_scale)
denval = max(self.kappa_scale) - minval
x = (x - minval) / denval
return x
|