File size: 8,695 Bytes
ffd9653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# -*- coding: utf-8 -*-
"""Translation Model.ipynb

Automatically generated by Colaboratory.

Original file is located at
    https://colab.research.google.com/drive/1njNMtQLmXo_zVtAKxA91dZJh_bxlLume
"""

import pathlib
import random
import string
import h5py
import re
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.layers.experimental.preprocessing import TextVectorization

import gdown

url = "https://drive.google.com/uc?id=1FOC2x5HlgcFTMgnGhPjvLWWlEqVTLQno"
gdown.download(url, quiet=False)

with open('cmn.txt', encoding="utf-8") as f:
    lines = f.read().split("\n")[:-1]
text_pairs = []
for line in lines:
    eng, cmn, o1 = line.split("\t")
    text_pairs.append((eng, cmn))

random.shuffle(text_pairs)
num_val_samples = int(0.15 * len(text_pairs))
num_train_samples = len(text_pairs) - 2 * num_val_samples
train_pairs = text_pairs[:num_train_samples]
val_pairs = text_pairs[num_train_samples : num_train_samples + num_val_samples]
test_pairs = text_pairs[num_train_samples + num_val_samples :]

strip_chars = string.punctuation + "¿"
strip_chars = strip_chars.replace("[", "")
strip_chars = strip_chars.replace("]", "")

vocab_size = 15000
sequence_length = 20
batch_size = 64

eng_vectorization = TextVectorization(
    max_tokens=vocab_size,
    output_mode="int",
    output_sequence_length=sequence_length,
)
cmn_vectorization = TextVectorization(
    max_tokens=vocab_size,
    output_mode="int",
    split='character',
    output_sequence_length=sequence_length + 1,
    standardize='strip_punctuation',
)
train_eng_texts = [pair[0] for pair in train_pairs]
train_cmn_texts = [pair[1] for pair in train_pairs]
eng_vectorization.adapt(train_eng_texts)
cmn_vectorization.adapt(train_cmn_texts)

def format_dataset(eng, cmn):
    eng = eng_vectorization(eng)
    cmn = cmn_vectorization(cmn)
    return (
        {
            "encoder_inputs": eng,
            "decoder_inputs": cmn[:, :-1],
        },
        cmn[:, 1:],
    )


def make_dataset(pairs):
    eng_texts, cmn_texts = zip(*pairs)
    eng_texts = list(eng_texts)
    cmn_texts = list(cmn_texts)
    dataset = tf.data.Dataset.from_tensor_slices((eng_texts, cmn_texts))
    dataset = dataset.batch(batch_size)
    dataset = dataset.map(format_dataset)
    return dataset.shuffle(2048).prefetch(16).cache()


train_ds = make_dataset(train_pairs)
val_ds = make_dataset(val_pairs)

class TransformerEncoder(layers.Layer):
    def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):
        super(TransformerEncoder, self).__init__(**kwargs)
        self.embed_dim = embed_dim
        self.dense_dim = dense_dim
        self.num_heads = num_heads
        self.attention = layers.MultiHeadAttention(
            num_heads=num_heads, key_dim=embed_dim
        )
        self.dense_proj = keras.Sequential(
            [
                layers.Dense(dense_dim, activation="relu"),
                layers.Dense(embed_dim),
            ]
        )
        self.layernorm_1 = layers.LayerNormalization()
        self.layernorm_2 = layers.LayerNormalization()
        self.supports_masking = True

    def call(self, inputs, mask=None):
        if mask is not None:
            padding_mask = tf.cast(mask[:, tf.newaxis, tf.newaxis, :], dtype="int32")
        attention_output = self.attention(
            query=inputs, value=inputs, key=inputs, attention_mask=padding_mask
        )
        proj_input = self.layernorm_1(inputs + attention_output)
        proj_output = self.dense_proj(proj_input)
        return self.layernorm_2(proj_input + proj_output)
    def get_config(self):
        config = super().get_config()
        config.update({
            "embed_dim": self.embed_dim,
            "dense_dim": self.dense_dim,
            "num_heads": self.num_heads,
        })
        return config


class PositionalEmbedding(layers.Layer):
    def __init__(self, sequence_length, vocab_size, embed_dim, **kwargs):
        super(PositionalEmbedding, self).__init__(**kwargs)
        self.token_embeddings = layers.Embedding(
            input_dim=vocab_size, output_dim=embed_dim
        )
        self.position_embeddings = layers.Embedding(
            input_dim=sequence_length, output_dim=embed_dim
        )
        self.sequence_length = sequence_length
        self.vocab_size = vocab_size
        self.embed_dim = embed_dim

    def call(self, inputs):
        length = tf.shape(inputs)[-1]
        positions = tf.range(start=0, limit=length, delta=1)
        embedded_tokens = self.token_embeddings(inputs)
        embedded_positions = self.position_embeddings(positions)
        return embedded_tokens + embedded_positions

    def compute_mask(self, inputs, mask=None):
        return tf.math.not_equal(inputs, 0)
    def get_config(self):
        config = super().get_config()
        config.update({
            "sequence_length": self.sequence_length,
            "vocab_size": self.vocab_size,
            "embed_dim": self.embed_dim,
        })
        return config


class TransformerDecoder(layers.Layer):
    def __init__(self, embed_dim, latent_dim, num_heads, **kwargs):
        super(TransformerDecoder, self).__init__(**kwargs)
        self.embed_dim = embed_dim
        self.latent_dim = latent_dim
        self.num_heads = num_heads
        self.attention_1 = layers.MultiHeadAttention(
            num_heads=num_heads, key_dim=embed_dim
        )
        self.attention_2 = layers.MultiHeadAttention(
            num_heads=num_heads, key_dim=embed_dim
        )
        self.dense_proj = keras.Sequential(
            [
                layers.Dense(latent_dim, activation="relu"),
                layers.Dense(embed_dim),
            ]
        )
        self.layernorm_1 = layers.LayerNormalization()
        self.layernorm_2 = layers.LayerNormalization()
        self.layernorm_3 = layers.LayerNormalization()
        self.supports_masking = True

    def call(self, inputs, encoder_outputs, mask=None):
        causal_mask = self.get_causal_attention_mask(inputs)
        if mask is not None:
            padding_mask = tf.cast(mask[:, tf.newaxis, :], dtype="int32")
            padding_mask = tf.minimum(padding_mask, causal_mask)

        attention_output_1 = self.attention_1(
            query=inputs, value=inputs, key=inputs, attention_mask=causal_mask
        )
        out_1 = self.layernorm_1(inputs + attention_output_1)

        attention_output_2 = self.attention_2(
            query=out_1,
            value=encoder_outputs,
            key=encoder_outputs,
            attention_mask=padding_mask,
        )
        out_2 = self.layernorm_2(out_1 + attention_output_2)

        proj_output = self.dense_proj(out_2)
        return self.layernorm_3(out_2 + proj_output)

    def get_causal_attention_mask(self, inputs):
        input_shape = tf.shape(inputs)
        batch_size, sequence_length = input_shape[0], input_shape[1]
        i = tf.range(sequence_length)[:, tf.newaxis]
        j = tf.range(sequence_length)
        mask = tf.cast(i >= j, dtype="int32")
        mask = tf.reshape(mask, (1, input_shape[1], input_shape[1]))
        mult = tf.concat(
            [tf.expand_dims(batch_size, -1), tf.constant([1, 1], dtype=tf.int32)],
            axis=0,
        )
        return tf.tile(mask, mult)
    def get_config(self):
        config = super().get_config()
        config.update({
            "embed_dim": self.embed_dim,
            "latent_dim": self.latent_dim,
            "num_heads": self.num_heads,
        })
        return config

url = "https://drive.google.com/uc?id=1a4eTAL4sLUi42P28Veihrv-fVPwFymTa"
gdown.download(url, quiet=False)

custom_objects = {"TransformerEncoder": TransformerEncoder, "PositionalEmbedding": PositionalEmbedding, "TransformerDecoder": TransformerDecoder}
with keras.utils.custom_object_scope(custom_objects):
    transformer = tf.keras.models.load_model('re-model.h5')

cmn_vocab = cmn_vectorization.get_vocabulary()
cmn_index_lookup = dict(zip(range(len(cmn_vocab)), cmn_vocab))
max_decoded_sentence_length = 20


def decode_sequence_chinese(input_sentence):
    tokenized_input_sentence = eng_vectorization([input_sentence])
    decoded_sentence = "[start]"
    for i in range(max_decoded_sentence_length):
        tokenized_target_sentence = cmn_vectorization([decoded_sentence])[:, :-1]
        predictions = transformer([tokenized_input_sentence, tokenized_target_sentence])

        sampled_token_index = np.argmax(predictions[0, i, :])
        sampled_token = cmn_index_lookup[sampled_token_index]
        decoded_sentence += " " + sampled_token

        if sampled_token == "[end]":
            break
    return decoded_sentence