Spaces:
Runtime error
Runtime error
File size: 9,669 Bytes
a210e7f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
# -*- coding: utf-8 -*-
"""translation.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1PADMvkToYgpdhvQYlZw4q8O-gLvsvGmK
"""
import pathlib
import random
import string
import re
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers
# googled fix to "cannot find TextVectorization"
from tensorflow.keras.layers.experimental.preprocessing import TextVectorization
import os
import gdown
text_file = keras.utils.get_file(
fname = "spa-eng.zip",
origin = "http://storage.googleapis.com/download.tensorflow.org/data/spa-eng.zip",
extract = True,
)
text_file = pathlib.Path(text_file).parent / "spa-eng" / "spa.txt"
# change: added utf-8 encoding
with open(text_file, encoding="utf-8") as f:
lines = f.read().split("\n")[:-1]
text_pairs = []
for line in lines:
eng, spa = line.split("\t")
spa = "[start] " + spa + " [end]"
text_pairs.append((eng, spa))
for _ in range(5):
print(random.choice(text_pairs))
random.shuffle(text_pairs)
num_val_samples = int(0.15 * len(text_pairs))
num_train_samples = len(text_pairs) - 2 * num_val_samples
train_pairs = text_pairs[:num_train_samples]
val_pairs = text_pairs[num_train_samples : num_train_samples + num_val_samples]
test_pairs = text_pairs[num_train_samples + num_val_samples :]
print(f"{len(text_pairs)} total pairs")
print(f"{len(train_pairs)} training pairs")
print(f"{len(val_pairs)} validation pairs")
print(f"{len(test_pairs)} test pairs")
strip_chars = string.punctuation + "¿"
strip_chars = strip_chars.replace("[", "")
strip_chars = strip_chars.replace("]", "")
vocab_size = 15000
sequence_length = 20
batch_size = 64
def custom_standardization(input_string):
lowercase = tf.strings.lower(input_string)
return tf.strings.regex_replace(lowercase, "[%s]" % re.escape(strip_chars), "")
eng_vectorization = TextVectorization(
max_tokens=vocab_size,
output_mode="int",
output_sequence_length=sequence_length,
)
spa_vectorization = TextVectorization(
max_tokens=vocab_size,
output_mode="int",
output_sequence_length=sequence_length + 1,
standardize=custom_standardization,
)
train_eng_texts = [pair[0] for pair in train_pairs]
train_spa_texts = [pair[1] for pair in train_pairs]
eng_vectorization.adapt(train_eng_texts)
spa_vectorization.adapt(train_spa_texts)
def format_dataset(eng, spa):
eng = eng_vectorization(eng)
spa = spa_vectorization(spa)
return (
{
"encoder_inputs": eng,
"decoder_inputs": spa[:, :-1],
},
spa[:, 1:],
)
def make_dataset(pairs):
eng_texts, spa_texts = zip(*pairs)
eng_texts = list(eng_texts)
spa_texts = list(spa_texts)
dataset = tf.data.Dataset.from_tensor_slices((eng_texts, spa_texts))
dataset = dataset.batch(batch_size)
dataset = dataset.map(format_dataset)
return dataset.shuffle(2048).prefetch(16).cache()
train_ds = make_dataset(train_pairs)
val_ds = make_dataset(val_pairs)
for inputs, targets in train_ds.take(1):
print(f'inputs["encoder_inputs"].shape: {inputs["encoder_inputs"].shape}')
print(f'inputs["decoder_inputs"].shape: {inputs["decoder_inputs"].shape}')
print(f"targets.shape: {targets.shape}")
class TransformerEncoder(layers.Layer):
def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):
super(TransformerEncoder, self).__init__(**kwargs)
self.embed_dim = embed_dim
self.dense_dim = dense_dim
self.num_heads = num_heads
self.attention = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim
)
self.dense_proj = keras.Sequential(
[
layers.Dense(dense_dim, activation="relu"),
layers.Dense(embed_dim),
]
)
self.layernorm_1 = layers.LayerNormalization()
self.layernorm_2 = layers.LayerNormalization()
self.supports_masking = True
def call(self, inputs, mask=None):
if mask is not None:
padding_mask = tf.cast(mask[:, tf.newaxis, tf.newaxis, :], dtype="int32")
attention_output = self.attention(
query=inputs, value=inputs, key=inputs, attention_mask=padding_mask
)
proj_input = self.layernorm_1(inputs + attention_output)
proj_output = self.dense_proj(proj_input)
return self.layernorm_2(proj_input + proj_output)
class PositionalEmbedding(layers.Layer):
def __init__(self, sequence_length, vocab_size, embed_dim, **kwargs):
super(PositionalEmbedding, self).__init__(**kwargs)
self.token_embeddings = layers.Embedding(
input_dim=vocab_size, output_dim=embed_dim
)
self.position_embeddings = layers.Embedding(
input_dim=sequence_length, output_dim=embed_dim
)
self.sequence_length = sequence_length
self.vocab_size = vocab_size
self.embed_dim = embed_dim
def call(self, inputs):
length = tf.shape(inputs)[-1]
positions = tf.range(start=0, limit=length, delta=1)
embedded_tokens = self.token_embeddings(inputs)
embedded_positions = self.position_embeddings(positions)
return embedded_tokens + embedded_positions
def compute_mask(self, inputs, mask=None):
return tf.math.not_equal(inputs, 0)
class TransformerDecoder(layers.Layer):
def __init__(self, embed_dim, latent_dim, num_heads, **kwargs):
super(TransformerDecoder, self).__init__(**kwargs)
self.embed_dim = embed_dim
self.latent_dim = latent_dim
self.num_heads = num_heads
self.attention_1 = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim
)
self.attention_2 = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim
)
self.dense_proj = keras.Sequential(
[
layers.Dense(latent_dim, activation="relu"),
layers.Dense(embed_dim),
]
)
self.layernorm_1 = layers.LayerNormalization()
self.layernorm_2 = layers.LayerNormalization()
self.layernorm_3 = layers.LayerNormalization()
self.supports_masking = True
def call(self, inputs, encoder_outputs, mask=None):
causal_mask = self.get_causal_attention_mask(inputs)
if mask is not None:
padding_mask = tf.cast(mask[:, tf.newaxis, :], dtype="int32")
padding_mask = tf.minimum(padding_mask, causal_mask)
attention_output_1 = self.attention_1(
query=inputs, value=inputs, key=inputs, attention_mask=causal_mask
)
out_1 = self.layernorm_1(inputs + attention_output_1)
attention_output_2 = self.attention_2(
query=out_1,
value=encoder_outputs,
key=encoder_outputs,
attention_mask=padding_mask,
)
out_2 = self.layernorm_2(out_1 + attention_output_2)
proj_output = self.dense_proj(out_2)
return self.layernorm_3(out_2 + proj_output)
def get_causal_attention_mask(self, inputs):
input_shape = tf.shape(inputs)
batch_size, sequence_length = input_shape[0], input_shape[1]
i = tf.range(sequence_length)[:, tf.newaxis]
j = tf.range(sequence_length)
mask = tf.cast(i >= j, dtype="int32")
mask = tf.reshape(mask, (1, input_shape[1], input_shape[1]))
mult = tf.concat(
[tf.expand_dims(batch_size, -1), tf.constant([1, 1], dtype=tf.int32)],
axis=0,
)
return tf.tile(mask, mult)
embed_dim = 256
latent_dim = 2048
num_heads = 8
encoder_inputs = keras.Input(shape=(None,), dtype="int64", name="encoder_inputs")
x = PositionalEmbedding(sequence_length, vocab_size, embed_dim)(encoder_inputs)
encoder_outputs = TransformerEncoder(embed_dim, latent_dim, num_heads)(x)
encoder = keras.Model(encoder_inputs, encoder_outputs)
decoder_inputs = keras.Input(shape=(None,), dtype="int64", name="decoder_inputs")
encoded_seq_inputs = keras.Input(shape=(None, embed_dim), name="decoder_state_inputs")
x = PositionalEmbedding(sequence_length, vocab_size, embed_dim)(decoder_inputs)
x = TransformerDecoder(embed_dim, latent_dim, num_heads)(x, encoded_seq_inputs)
x = layers.Dropout(0.5)(x)
decoder_outputs = layers.Dense(vocab_size, activation="softmax")(x)
decoder = keras.Model([decoder_inputs, encoded_seq_inputs], decoder_outputs)
decoder_outputs = decoder([decoder_inputs, encoder_outputs])
transformer = keras.Model(
[encoder_inputs, decoder_inputs], decoder_outputs, name="transformer"
)
transformer.summary()
#load weights using gdown
gdown.download_folder("https://drive.google.com/drive/folders/1DwN-MlL6MMh7qVJbwoLrWBSMVBN5zbBi")
transformer.load_weights("./EngToSpanishckpts/cp.ckpt").expect_partial()
spa_vocab = spa_vectorization.get_vocabulary()
spa_index_lookup = dict(zip(range(len(spa_vocab)), spa_vocab))
max_decoded_sentence_length = 20
def decode_sequence(input_sentence):
tokenized_input_sentence = eng_vectorization([input_sentence])
decoded_sentence = "[start]"
for i in range(max_decoded_sentence_length):
tokenized_target_sentence = spa_vectorization([decoded_sentence])[:, :-1]
predictions = transformer([tokenized_input_sentence, tokenized_target_sentence])
sampled_token_index = np.argmax(predictions[0, i, :])
sampled_token = spa_index_lookup[sampled_token_index]
decoded_sentence += " " + sampled_token
if sampled_token == "[end]":
break
return decoded_sentence
|