File size: 5,779 Bytes
a210e7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# -*- coding: utf-8 -*-

# IMPORTS
import os
import numpy as np
import requests
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

# MODEL STUFF
# The set of characters accepted in the transcription.
characters = [x for x in "abcdefghijklmnopqrstuvwxyz'?! "]
# Mapping characters to integers
char_to_num = keras.layers.StringLookup(vocabulary=characters, oov_token="")
# Mapping integers back to original characters
num_to_char = keras.layers.StringLookup(
    vocabulary=char_to_num.get_vocabulary(), oov_token="", invert=True
)


# An integer scalar Tensor. The window length in samples.
frame_length = 256
# An integer scalar Tensor. The number of samples to step.
frame_step = 160
# An integer scalar Tensor. The size of the FFT to apply.
# If not provided, uses the smallest power of 2 enclosing frame_length.
fft_length = 384

# MODEL LOSS
def CTCLoss(y_true, y_pred):
    # Compute the training-time loss value
    batch_len = tf.cast(tf.shape(y_true)[0], dtype="int64")
    input_length = tf.cast(tf.shape(y_pred)[1], dtype="int64")
    label_length = tf.cast(tf.shape(y_true)[1], dtype="int64")

    input_length = input_length * tf.ones(shape=(batch_len, 1), dtype="int64")
    label_length = label_length * tf.ones(shape=(batch_len, 1), dtype="int64")

    loss = keras.backend.ctc_batch_cost(y_true, y_pred, input_length, label_length)
    return loss

# BUILD MODEL
def build_model(input_dim, output_dim, rnn_layers=5, rnn_units=128):
    """Model similar to DeepSpeech2."""
    # Model's input
    input_spectrogram = layers.Input((None, input_dim), name="input")
    # Expand the dimension to use 2D CNN.
    x = layers.Reshape((-1, input_dim, 1), name="expand_dim")(input_spectrogram)
    # Convolution layer 1
    x = layers.Conv2D(
        filters=32,
        kernel_size=[11, 41],
        strides=[2, 2],
        padding="same",
        use_bias=False,
        name="conv_1",
    )(x)
    x = layers.BatchNormalization(name="conv_1_bn")(x)
    x = layers.ReLU(name="conv_1_relu")(x)
    # Convolution layer 2
    x = layers.Conv2D(
        filters=32,
        kernel_size=[11, 21],
        strides=[1, 2],
        padding="same",
        use_bias=False,
        name="conv_2",
    )(x)
    x = layers.BatchNormalization(name="conv_2_bn")(x)
    x = layers.ReLU(name="conv_2_relu")(x)
    # Reshape the resulted volume to feed the RNNs layers
    x = layers.Reshape((-1, x.shape[-2] * x.shape[-1]))(x)
    # RNN layers
    for i in range(1, rnn_layers + 1):
        recurrent = layers.GRU(
            units=rnn_units,
            activation="tanh",
            recurrent_activation="sigmoid",
            use_bias=True,
            return_sequences=True,
            reset_after=True,
            name=f"gru_{i}",
        )
        x = layers.Bidirectional(
            recurrent, name=f"bidirectional_{i}", merge_mode="concat"
        )(x)
        if i < rnn_layers:
            x = layers.Dropout(rate=0.5)(x)
    # Dense layer
    x = layers.Dense(units=rnn_units * 2, name="dense_1")(x)
    x = layers.ReLU(name="dense_1_relu")(x)
    x = layers.Dropout(rate=0.5)(x)
    # Classification layer
    output = layers.Dense(units=output_dim + 1, activation="softmax")(x)
    # Model
    model = keras.Model(input_spectrogram, output, name="DeepSpeech_2")
    # Optimizer
    opt = keras.optimizers.Adam(learning_rate=1e-4)
    # Compile the model and return
    model.compile(optimizer=opt, loss=CTCLoss)
    return model

# GET AND INSTANTIATE MODEL
model = build_model(
    input_dim = fft_length // 2 + 1,
    output_dim = char_to_num.vocabulary_size(),
    rnn_units = 512,
)


# GET TEXT FROM MODEL PREDICTION
# A utility function to decode the output of the network
def decode_batch_predictions(pred):
    input_len = np.ones(pred.shape[0]) * pred.shape[1]
    # Use greedy search. For complex tasks, you can use beam search
    results = keras.backend.ctc_decode(pred, input_length=input_len, greedy=True)[0][0]
    # Iterate over the results and get back the text
    output_text = []
    for result in results:
        result = tf.strings.reduce_join(num_to_char(result)).numpy().decode("utf-8")
        output_text.append(result)
    return output_text


# PATH TO CKPT
# google share link
ckpt_link = 'https://drive.google.com/file/d/14mT_wJMuIqUEJSS12aAc6bnPCjYuLWGf/view?usp=sharing'

# Define the local filename to save data
local_file = 'AudioToTextCKPT.hdf5'

# Make http request for remote file data
data = requests.get(ckpt_link)

# Save file data to local copy
with open(local_file, 'wb')as file:
    file.write(data.content)

ckpt = local_file


# LOAD CKPT TO MODEL
model.load_weights(ckpt)

# CONVERT AUDIO TO TEXT
def AudioToText(wav_file):
    ###########################################
    ##  Process the Audio
    ##########################################
    # 1. Read wav file
    file = tf.io.read_file(wav_file)
    # 2. Decode the wav file
    audio, _ = tf.audio.decode_wav(file)
    audio = tf.squeeze(audio, axis=-1)
    # 3. Change type to float
    audio = tf.cast(audio, tf.float32)
    # 4. Get the spectrogram
    spectrogram = tf.signal.stft(
        audio, frame_length=frame_length, frame_step=frame_step, fft_length=fft_length
    )
    # 5. We only need the magnitude, which can be derived by applying tf.abs
    spectrogram = tf.abs(spectrogram)
    spectrogram = tf.math.pow(spectrogram, 0.5)
    # 6. normalisation
    means = tf.math.reduce_mean(spectrogram, 1, keepdims=True)
    stddevs = tf.math.reduce_std(spectrogram, 1, keepdims=True)
    spectrogram = (spectrogram - means) / (stddevs + 1e-10)

    pred = model.predict(spectrogram)
    
    output_text = decode_batch_predictions(pred)

    return output_text


# testing model
print(AudioToText('testWav.wav'))