File size: 9,910 Bytes
d576847
22bd812
 
 
 
3c5755f
 
 
22bd812
 
 
 
 
 
12c1471
 
f1e80f2
12c1471
22bd812
 
 
12c1471
22bd812
 
 
 
 
 
12c1471
 
 
22bd812
f1e80f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22bd812
12c1471
 
 
 
22bd812
 
 
12c1471
22bd812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f1e80f2
22bd812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c5755f
14fb1c1
d576847
14fb1c1
3c5755f
d576847
3c5755f
 
 
 
d576847
14fb1c1
 
3c5755f
 
 
 
14fb1c1
 
 
3c5755f
 
 
 
14fb1c1
 
 
 
 
 
3c5755f
 
 
 
 
 
14fb1c1
 
3c5755f
 
 
 
 
 
 
 
 
 
 
 
 
 
d576847
3c5755f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d576847
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
from typing import Dict, List, Set

import evaluate
from datasets import Features, Sequence, Value
from sklearn.metrics import accuracy_score
from itertools import chain
from random import choice
from typing import Any, Dict, List, Optional, Tuple


_CITATION = """
"""

_DESCRIPTION = """
This module provides evaluation metrics for Aspect-Based Sentiment Analysis (ABSA). 
The metrics include precision, recall, and F1 score for both aspect terms and category detection.
Additionally it calculates the accuracy for polarities from aspect terms and category detection.
ABSA evaluates the capability of a model to identify and correctly classify the sentiment of specific aspects within a text.
"""

_KWARGS_DESCRIPTION = """
Computes precision, recall, and F1 score for aspect terms and category detection in Aspect-Based Sentiment Analysis (ABSA). Also calculates de accuracy for polarities on each task.

Args:
    predictions: List of ABSA predictions with the following structure:
        - 'aspects': Sequence of aspect annotations, each with the following keys:
            - 'term': Aspect term
            - 'polarity': Polarity of the aspect term
        - 'category': Sequence of category annotations, each with the following keys:
            - 'category': Category
            - 'polarity': polarity of the category
    references: List of ABSA references with the same structure as predictions.

Examples for predictions:
        [
            {
                "aspects": [
                    {"term": "battery life", "polarity": "positive"},
                    {"term": "camera", "polarity": "negative"}
                ],
                "category": [
                    {"category": "Battery", "polarity": "positive"},
                    {"category": "Camera", "polarity": "negative"}
                ]
            }
        ]

Returns:
    term_extraction_results: f1 score, precision and recall for aspect terms
    term_polarity_results_accuracy: accuracy for polarities on aspect terms
    category_detection_results: f1 score, precision and recall for category detection
    category_polarity_results_accuracy: accuracy for polarities on categories
"""


class AbsaEvaluator(evaluate.Metric):
    def _info(self):
        return evaluate.MetricInfo(
            description=_DESCRIPTION,
            citation=_CITATION,
            inputs_description=_KWARGS_DESCRIPTION,
            features=Features(
                {
                    "predictions": Features(
                        {
                            "aspects": Features(
                                {
                                    "term": Sequence(Value("string")),
                                    "polarity": Sequence(Value("string")),
                                }
                            ),
                            "category": Features(
                                {
                                    "category": Sequence(Value("string")),
                                    "polarity": Sequence(Value("string")),
                                }
                            ),
                        }
                    ),
                    "references": Features(
                        {
                            "aspects": Features(
                                {
                                    "term": Sequence(Value("string")),
                                    "polarity": Sequence(Value("string")),
                                }
                            ),
                            "category": Features(
                                {
                                    "category": Sequence(Value("string")),
                                    "polarity": Sequence(Value("string")),
                                }
                            ),
                        }
                    ),
                }
            ),
        )

    def _compute(self, predictions, references):
        # preprocess aspect term
        (
            truth_aspect_terms,
            pred_aspect_terms,
            truth_term_polarities,
            pred_term_polarities,
        ) = absa_term_preprocess(
            references=references,
            predictions=predictions,
            subtask_key="aspects",
            subtask_value="term",
        )
        # evaluate
        term_results = self.semeval_metric(
            truth_aspect_terms, pred_aspect_terms
        )
        term_polarity_acc = accuracy_score(
            truth_term_polarities, pred_term_polarities
        )

        # preprocess category detection
        (
            truth_categories,
            pred_categories,
            truth_cat_polarities,
            pred_cat_polarities,
        ) = absa_term_preprocess(
            references=references,
            predictions=predictions,
            subtask_key="category",
            subtask_value="category",
        )

        # evaluate
        category_results = self.semeval_metric(
            truth_categories, pred_categories
        )
        cat_polarity_acc = accuracy_score(
            truth_cat_polarities, pred_cat_polarities
        )

        return {
            "term_extraction_results": term_results,
            "term_polarity_results_accuracy": term_polarity_acc,
            "category_detection_results": category_results,
            "category_polarity_results_accuracy": cat_polarity_acc,
        }

    def semeval_metric(
        self, truths: List[List[str]], preds: List[List[str]]
    ) -> Dict[str, float]:
        """
        Implements evaluation for extraction tasks using precision, recall, and F1 score.

        Parameters:
        - truths: List of lists, where each list contains the ground truth labels for a sample.
        - preds: List of lists, where each list contains the predicted labels for a sample.

        Returns:
        - A dictionary containing the precision, recall, F1 score, and counts of common, retrieved, and relevant.

        link for this code: https://github.com/davidsbatista/Aspect-Based-Sentiment-Analysis/blob/1d9c8ec1131993d924e96676fa212db6b53cb870/libraries/baselines.py#L387
        """
        b = 1
        common, relevant, retrieved = 0.0, 0.0, 0.0
        for truth, pred in zip(truths, preds):
            common += len([a for a in pred if a in truth])
            retrieved += len(pred)
            relevant += len(truth)
        precision = common / retrieved if retrieved > 0 else 0.0
        recall = common / relevant if relevant > 0 else 0.0
        f1 = (
            (1 + (b**2))
            * precision
            * recall
            / ((precision * b**2) + recall)
            if precision > 0 and recall > 0
            else 0.0
        )
        return {
            "precision": precision,
            "recall": recall,
            "f1_score": f1,
            "common": common,
            "retrieved": retrieved,
            "relevant": relevant,
        }
        
def adjust_predictions(
    refs: List[List[Any]], preds: List[List[Any]], choices: Set[Any]
) -> List[List[Any]]:
    """Adjust predictions to match the length of references with either a special token or random choice."""
    choices_list = list(choices)
    adjusted_preds = []
    for ref, pred in zip(refs, preds):
        if len(pred) < len(ref):
            missing_count = len(ref) - len(pred)
            pred.extend([choice(choices_list) for _ in range(missing_count)])
        elif len(pred) > len(ref):
            pred = pred[:len(ref)]
        adjusted_preds.append(pred)
    return adjusted_preds


def extract_aspects(
    data: List[Dict[str, Dict[str, Any]]], specific_key: str, specific_val: str
) -> List[List[Any]]:
    """Extracts and returns a list of specified aspect details from the nested 'aspects' data."""
    return [item[specific_key][specific_val] for item in data]


def absa_term_preprocess(
    references: List[Dict[str, Any]],
    predictions: List[Dict[str, Any]],
    subtask_key: str,
    subtask_value: str,
) -> Tuple[List[str], List[str], List[str], List[str]]:
    """
    Preprocess the terms and polarities for aspect-based sentiment analysis.

    Args:
        references (List[Dict]): A list of dictionaries containing the actual terms and polarities under 'aspects'.
        predictions (List[Dict]): A list of dictionaries containing predicted aspect categories to terms and their sentiments.
        subtask_key (str): The key under which aspects are stored.
        subtask_value (str): The specific aspect value to extract.

    Returns:
        Tuple[List[str], List[str], List[str], List[str]]: A tuple containing lists of true aspect terms,
        adjusted predicted aspect terms, true polarities, and adjusted predicted polarities.
    """

    # Extract aspect terms and polarities
    truth_aspect_terms = extract_aspects(references, subtask_key, subtask_value)
    pred_aspect_terms = extract_aspects(predictions, subtask_key, subtask_value)
    truth_polarities = extract_aspects(references, subtask_key, "polarity")
    pred_polarities = extract_aspects(predictions, subtask_key, "polarity")

    # Define adjustment parameters
    special_token = "NONE"  # For missing aspect terms
    sentiment_choices = set(flatten_list(truth_polarities))    

    # Adjust the predictions to match the length of references
    adjusted_pred_terms = adjust_predictions(
        truth_aspect_terms, pred_aspect_terms, [special_token]
    )
    adjusted_pred_polarities = adjust_predictions(
        truth_polarities, pred_polarities, sentiment_choices
    )

    return (
        flatten_list(truth_aspect_terms),
        flatten_list(adjusted_pred_terms),
        flatten_list(truth_polarities),
        flatten_list(adjusted_pred_polarities),
    )


def flatten_list(nested_list):
    """Flatten a nested list into a single-level list."""
    return list(chain.from_iterable(nested_list))