Spaces:
Sleeping
Sleeping
File size: 1,614 Bytes
106e2e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 |
import torch
from transformers import (T5ForConditionalGeneration,T5Tokenizer)
import gradio as gr
best_model_path = "swcrazyfan/KingJamesify-T5-large"
model = T5ForConditionalGeneration.from_pretrained(best_model_path)
tokenizer = T5Tokenizer.from_pretrained("swcrazyfan/KingJamesify-T5-large")
def tokenize_data(text):
# Tokenize the review body
input_ = "kingify: " + str(text) + ' </s>'
max_len = 512
# tokenize inputs
tokenized_inputs = tokenizer(input_, padding='max_length', truncation=True, max_length=max_len, return_attention_mask=True, return_tensors='pt')
inputs={"input_ids": tokenized_inputs['input_ids'],
"attention_mask": tokenized_inputs['attention_mask']}
return inputs
def generate_answers(text, temperature, num_beams, max_length):
inputs = tokenize_data(text)
results= model.generate(input_ids= inputs['input_ids'], attention_mask=inputs['attention_mask'], do_sample=True,
num_beams=num_beams,
max_length=max_length,
min_length=1,
early_stopping=True,
num_return_sequences=1,
temperature=temperature)
answer = tokenizer.decode(results[0], skip_special_tokens=True)
return answer
iface = gr.Interface(title="Kingify", description="Write anything below. Then, click submit to 'Kingify' it.", fn=generate_answers, inputs=[gr.inputs.Textbox(label="Original Text",lines=10), gr.inputs.Slider(label="Temperature", default=1.0, min_value=0.0, max_value=2.0, step=0.1), gr.inputs.Slider(label="Number of Beams", default=5, min_value=1, max_value=10, step=1), gr.inputs.Textbox(label="Max Length", default=512, lines=1)], outputs=["text"])
|