File size: 36,057 Bytes
d521fb7
 
 
 
 
8320ccc
d521fb7
8320ccc
 
d521fb7
9223079
 
 
d521fb7
 
9223079
d521fb7
 
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10dcc2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aa46ae9
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d4dd90
 
 
 
 
 
 
 
 
 
2eaeef9
 
4d4dd90
 
f90241e
 
 
 
 
 
 
 
 
 
 
 
 
 
aa46ae9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d4dd90
 
9223079
4d4dd90
 
9223079
 
 
 
 
 
 
4d4dd90
 
9223079
 
 
2507d2f
 
 
 
 
e400e91
2507d2f
 
 
 
 
 
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c88343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9223079
 
 
 
 
 
4c88343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e15a186
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e15a186
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d4dd90
 
9223079
 
4d4dd90
 
 
 
9223079
 
 
 
 
 
 
 
 
3c77caa
6cb641c
fe82065
e15a186
9223079
 
 
 
 
 
 
 
e15a186
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4c88343
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
import argparse
import pprint
from collections import Counter, defaultdict
from itertools import chain
from pathlib import Path
from types import SimpleNamespace
from typing import Dict, Iterable, List, Optional, Set, Tuple, Union

import cv2
import h5py
import numpy as np
import torch
import torchvision.transforms.functional as F
from scipy.spatial import KDTree
from tqdm import tqdm
from .extract_features import read_image, resize_image
from . import logger, matchers
from .match_features import find_unique_new_pairs
from .utils.base_model import dynamic_load
from .utils.io import list_h5_names
from .utils.parsers import names_to_pair, parse_retrieval

device = "cuda" if torch.cuda.is_available() else "cpu"

confs = {
    # Best quality but loads of points. Only use for small scenes
    "loftr": {
        "output": "matches-loftr",
        "model": {
            "name": "loftr",
            "weights": "outdoor",
            "max_keypoints": 2000,
            "match_threshold": 0.2,
        },
        "preprocessing": {
            "grayscale": True,
            "resize_max": 1024,
            "dfactor": 8,
            "width": 640,
            "height": 480,
            "force_resize": True,
        },
        "max_error": 1,  # max error for assigned keypoints (in px)
        "cell_size": 1,  # size of quantization patch (max 1 kp/patch)
    },
    # "loftr_quadtree": {
    #     "output": "matches-loftr-quadtree",
    #     "model": {
    #         "name": "quadtree",
    #         "weights": "outdoor",
    #         "max_keypoints": 2000,
    #         "match_threshold": 0.2,
    #     },
    #     "preprocessing": {
    #         "grayscale": True,
    #         "resize_max": 1024,
    #         "dfactor": 8,
    #         "width": 640,
    #         "height": 480,
    #         "force_resize": True,
    #     },
    #     "max_error": 1,  # max error for assigned keypoints (in px)
    #     "cell_size": 1,  # size of quantization patch (max 1 kp/patch)
    # },
    "cotr": {
        "output": "matches-cotr",
        "model": {
            "name": "cotr",
            "weights": "out/default",
            "max_keypoints": 2000,
            "match_threshold": 0.2,
        },
        "preprocessing": {
            "grayscale": False,
            "resize_max": 1024,
            "dfactor": 8,
            "width": 640,
            "height": 480,
            "force_resize": True,
        },
        "max_error": 1,  # max error for assigned keypoints (in px)
        "cell_size": 1,  # size of quantization patch (max 1 kp/patch)
    },
    # Semi-scalable loftr which limits detected keypoints
    "loftr_aachen": {
        "output": "matches-loftr_aachen",
        "model": {
            "name": "loftr",
            "weights": "outdoor",
            "max_keypoints": 2000,
            "match_threshold": 0.2,
        },
        "preprocessing": {"grayscale": True, "resize_max": 1024, "dfactor": 8},
        "max_error": 2,  # max error for assigned keypoints (in px)
        "cell_size": 8,  # size of quantization patch (max 1 kp/patch)
    },
    # Use for matching superpoint feats with loftr
    "loftr_superpoint": {
        "output": "matches-loftr_aachen",
        "model": {
            "name": "loftr",
            "weights": "outdoor",
            "max_keypoints": 2000,
            "match_threshold": 0.2,
        },
        "preprocessing": {"grayscale": True, "resize_max": 1024, "dfactor": 8},
        "max_error": 4,  # max error for assigned keypoints (in px)
        "cell_size": 4,  # size of quantization patch (max 1 kp/patch)
    },
    # Use topicfm for matching feats
    "topicfm": {
        "output": "matches-topicfm",
        "model": {
            "name": "topicfm",
            "weights": "outdoor",
            "max_keypoints": 2000,
            "match_threshold": 0.2,
        },
        "preprocessing": {
            "grayscale": True,
            "force_resize": True,
            "resize_max": 1024,
            "dfactor": 8,
            "width": 640,
            "height": 480,
        },
    },
    # Use aspanformer for matching feats
    "aspanformer": {
        "output": "matches-aspanformer",
        "model": {
            "name": "aspanformer",
            "weights": "outdoor",
            "max_keypoints": 2000,
            "match_threshold": 0.2,
        },
        "preprocessing": {
            "grayscale": True,
            "force_resize": True,
            "resize_max": 1024,
            "width": 640,
            "height": 480,
            "dfactor": 8,
        },
    },
    "duster": {
        "output": "matches-duster",
        "model": {
            "name": "duster",
            "weights": "vit_large",
            "max_keypoints": 2000,
            "match_threshold": 0.2,
        },
        "preprocessing": {
            "grayscale": False,
            "resize_max": 512,
            "dfactor": 16,
        },
    },
    "mast3r": {
        "output": "matches-mast3r",
        "model": {
            "name": "mast3r",
            "weights": "vit_large",
            "max_keypoints": 2000,
            "match_threshold": 0.2,
        },
        "preprocessing": {
            "grayscale": False,
            "resize_max": 512,
            "dfactor": 16,
        },
    },
    "xfeat_dense": {
        "output": "matches-xfeat_dense",
        "model": {
            "name": "xfeat_dense",
            "max_keypoints": 8000,
        },
        "preprocessing": {
            "grayscale": False,
            "force_resize": False,
            "resize_max": 1024,
            "width": 640,
            "height": 480,
            "dfactor": 8,
        },
    },
    "dkm": {
        "output": "matches-dkm",
        "model": {
            "name": "dkm",
            "weights": "outdoor",
            "max_keypoints": 2000,
            "match_threshold": 0.2,
        },
        "preprocessing": {
            "grayscale": False,
            "force_resize": True,
            "resize_max": 1024,
            "width": 80,
            "height": 60,
            "dfactor": 8,
        },
    },
    "roma": {
        "output": "matches-roma",
        "model": {
            "name": "roma",
            "weights": "outdoor",
            "max_keypoints": 2000,
            "match_threshold": 0.2,
        },
        "preprocessing": {
            "grayscale": False,
            "force_resize": True,
            "resize_max": 1024,
            "width": 320,
            "height": 240,
            "dfactor": 8,
        },
    },
    "gim(dkm)": {
        "output": "matches-gim",
        "model": {
            "name": "gim",
            "weights": "gim_dkm_100h.ckpt",
            "max_keypoints": 2000,
            "match_threshold": 0.2,
        },
        "preprocessing": {
            "grayscale": False,
            "force_resize": True,
            "resize_max": 1024,
            "width": 320,
            "height": 240,
            "dfactor": 8,
        },
    },
    "omniglue": {
        "output": "matches-omniglue",
        "model": {
            "name": "omniglue",
            "match_threshold": 0.2,
            "max_keypoints": 2000,
            "features": "null",
        },
        "preprocessing": {
            "grayscale": False,
            "resize_max": 1024,
            "dfactor": 8,
            "force_resize": False,
        },
    },
    "sold2": {
        "output": "matches-sold2",
        "model": {
            "name": "sold2",
            "max_keypoints": 2000,
            "match_threshold": 0.2,
        },
        "preprocessing": {
            "grayscale": True,
            "force_resize": True,
            "resize_max": 1024,
            "width": 640,
            "height": 480,
            "dfactor": 8,
        },
    },
    "gluestick": {
        "output": "matches-gluestick",
        "model": {
            "name": "gluestick",
            "use_lines": True,
            "max_keypoints": 1000,
            "max_lines": 300,
            "force_num_keypoints": False,
        },
        "preprocessing": {
            "grayscale": True,
            "force_resize": True,
            "resize_max": 1024,
            "width": 640,
            "height": 480,
            "dfactor": 8,
        },
    },
}

def to_cpts(kpts, ps):
    if ps > 0.0:
        kpts = np.round(np.round((kpts + 0.5) / ps) * ps - 0.5, 2)
    return [tuple(cpt) for cpt in kpts]


def assign_keypoints(
    kpts: np.ndarray,
    other_cpts: Union[List[Tuple], np.ndarray],
    max_error: float,
    update: bool = False,
    ref_bins: Optional[List[Counter]] = None,
    scores: Optional[np.ndarray] = None,
    cell_size: Optional[int] = None,
):
    if not update:
        # Without update this is just a NN search
        if len(other_cpts) == 0 or len(kpts) == 0:
            return np.full(len(kpts), -1)
        dist, kpt_ids = KDTree(np.array(other_cpts)).query(kpts)
        valid = dist <= max_error
        kpt_ids[~valid] = -1
        return kpt_ids
    else:
        ps = cell_size if cell_size is not None else max_error
        ps = max(ps, max_error)
        # With update we quantize and bin (optionally)
        assert isinstance(other_cpts, list)
        kpt_ids = []
        cpts = to_cpts(kpts, ps)
        bpts = to_cpts(kpts, int(max_error))
        cp_to_id = {val: i for i, val in enumerate(other_cpts)}
        for i, (cpt, bpt) in enumerate(zip(cpts, bpts)):
            try:
                kid = cp_to_id[cpt]
            except KeyError:
                kid = len(cp_to_id)
                cp_to_id[cpt] = kid
                other_cpts.append(cpt)
                if ref_bins is not None:
                    ref_bins.append(Counter())
            if ref_bins is not None:
                score = scores[i] if scores is not None else 1
                ref_bins[cp_to_id[cpt]][bpt] += score
            kpt_ids.append(kid)
        return np.array(kpt_ids)


def get_grouped_ids(array):
    # Group array indices based on its values
    # all duplicates are grouped as a set
    idx_sort = np.argsort(array)
    sorted_array = array[idx_sort]
    _, ids, _ = np.unique(sorted_array, return_counts=True, return_index=True)
    res = np.split(idx_sort, ids[1:])
    return res


def get_unique_matches(match_ids, scores):
    if len(match_ids.shape) == 1:
        return [0]

    isets1 = get_grouped_ids(match_ids[:, 0])
    isets2 = get_grouped_ids(match_ids[:, 1])
    uid1s = [ids[scores[ids].argmax()] for ids in isets1 if len(ids) > 0]
    uid2s = [ids[scores[ids].argmax()] for ids in isets2 if len(ids) > 0]
    uids = list(set(uid1s).intersection(uid2s))
    return match_ids[uids], scores[uids]


def matches_to_matches0(matches, scores):
    if len(matches) == 0:
        return np.zeros(0, dtype=np.int32), np.zeros(0, dtype=np.float16)
    n_kps0 = np.max(matches[:, 0]) + 1
    matches0 = -np.ones((n_kps0,))
    scores0 = np.zeros((n_kps0,))
    matches0[matches[:, 0]] = matches[:, 1]
    scores0[matches[:, 0]] = scores
    return matches0.astype(np.int32), scores0.astype(np.float16)


def kpids_to_matches0(kpt_ids0, kpt_ids1, scores):
    valid = (kpt_ids0 != -1) & (kpt_ids1 != -1)
    matches = np.dstack([kpt_ids0[valid], kpt_ids1[valid]])
    matches = matches.reshape(-1, 2)
    scores = scores[valid]

    # Remove n-to-1 matches
    matches, scores = get_unique_matches(matches, scores)
    return matches_to_matches0(matches, scores)

def scale_keypoints(kpts, scale):
    if np.any(scale != 1.0):
        kpts *= kpts.new_tensor(scale)
    return kpts

class ImagePairDataset(torch.utils.data.Dataset):
    default_conf = {
        "grayscale": True,
        "resize_max": 1024,
        "dfactor": 8,
        "cache_images": False,
    }

    def __init__(self, image_dir, conf, pairs):
        self.image_dir = image_dir
        self.conf = conf = SimpleNamespace(**{**self.default_conf, **conf})
        self.pairs = pairs
        if self.conf.cache_images:
            image_names = set(sum(pairs, ()))  # unique image names in pairs
            logger.info(f"Loading and caching {len(image_names)} unique images.")
            self.images = {}
            self.scales = {}
            for name in tqdm(image_names):
                image = read_image(self.image_dir / name, self.conf.grayscale)
                self.images[name], self.scales[name] = self.preprocess(image)

    def preprocess(self, image: np.ndarray):
        image = image.astype(np.float32, copy=False)
        size = image.shape[:2][::-1]
        scale = np.array([1.0, 1.0])

        if self.conf.resize_max:
            scale = self.conf.resize_max / max(size)
            if scale < 1.0:
                size_new = tuple(int(round(x * scale)) for x in size)
                image = resize_image(image, size_new, "cv2_area")
                scale = np.array(size) / np.array(size_new)

        if self.conf.grayscale:
            assert image.ndim == 2, image.shape
            image = image[None]
        else:
            image = image.transpose((2, 0, 1))  # HxWxC to CxHxW
        image = torch.from_numpy(image / 255.0).float()

        # assure that the size is divisible by dfactor
        size_new = tuple(
            map(
                lambda x: int(x // self.conf.dfactor * self.conf.dfactor),
                image.shape[-2:],
            )
        )
        image = F.resize(image, size=size_new)
        scale = np.array(size) / np.array(size_new)[::-1]
        return image, scale

    def __len__(self):
        return len(self.pairs)

    def __getitem__(self, idx):
        name0, name1 = self.pairs[idx]
        if self.conf.cache_images:
            image0, scale0 = self.images[name0], self.scales[name0]
            image1, scale1 = self.images[name1], self.scales[name1]
        else:
            image0 = read_image(self.image_dir / name0, self.conf.grayscale)
            image1 = read_image(self.image_dir / name1, self.conf.grayscale)
            image0, scale0 = self.preprocess(image0)
            image1, scale1 = self.preprocess(image1)
        return image0, image1, scale0, scale1, name0, name1


@torch.no_grad()
def match_dense(
    conf: Dict,
    pairs: List[Tuple[str, str]],
    image_dir: Path,
    match_path: Path,  # out
    existing_refs: Optional[List] = [],
):
    device = "cuda" if torch.cuda.is_available() else "cpu"
    Model = dynamic_load(matchers, conf["model"]["name"])
    model = Model(conf["model"]).eval().to(device)

    dataset = ImagePairDataset(image_dir, conf["preprocessing"], pairs)
    loader = torch.utils.data.DataLoader(
        dataset, num_workers=16, batch_size=1, shuffle=False
    )

    logger.info("Performing dense matching...")
    with h5py.File(str(match_path), "a") as fd:
        for data in tqdm(loader, smoothing=0.1):
            # load image-pair data
            image0, image1, scale0, scale1, (name0,), (name1,) = data
            scale0, scale1 = scale0[0].numpy(), scale1[0].numpy()
            image0, image1 = image0.to(device), image1.to(device)

            # match semi-dense
            # for consistency with pairs_from_*: refine kpts of image0
            if name0 in existing_refs:
                # special case: flip to enable refinement in query image
                pred = model({"image0": image1, "image1": image0})
                pred = {
                    **pred,
                    "keypoints0": pred["keypoints1"],
                    "keypoints1": pred["keypoints0"],
                }
            else:
                # usual case
                pred = model({"image0": image0, "image1": image1})

            # Rescale keypoints and move to cpu
            kpts0, kpts1 = pred["keypoints0"], pred["keypoints1"]
            kpts0 = scale_keypoints(kpts0 + 0.5, scale0) - 0.5
            kpts1 = scale_keypoints(kpts1 + 0.5, scale1) - 0.5
            kpts0 = kpts0.cpu().numpy()
            kpts1 = kpts1.cpu().numpy()
            scores = pred["scores"].cpu().numpy()

            # Write matches and matching scores in hloc format
            pair = names_to_pair(name0, name1)
            if pair in fd:
                del fd[pair]
            grp = fd.create_group(pair)

            # Write dense matching output
            grp.create_dataset("keypoints0", data=kpts0)
            grp.create_dataset("keypoints1", data=kpts1)
            grp.create_dataset("scores", data=scores)
    del model, loader


# default: quantize all!
def load_keypoints(
    conf: Dict, feature_paths_refs: List[Path], quantize: Optional[set] = None
):
    name2ref = {
        n: i for i, p in enumerate(feature_paths_refs) for n in list_h5_names(p)
    }

    existing_refs = set(name2ref.keys())
    if quantize is None:
        quantize = existing_refs  # quantize all
    if len(existing_refs) > 0:
        logger.info(f"Loading keypoints from {len(existing_refs)} images.")

    # Load query keypoints
    cpdict = defaultdict(list)
    bindict = defaultdict(list)
    for name in existing_refs:
        with h5py.File(str(feature_paths_refs[name2ref[name]]), "r") as fd:
            kps = fd[name]["keypoints"].__array__()
            if name not in quantize:
                cpdict[name] = kps
            else:
                if "scores" in fd[name].keys():
                    kp_scores = fd[name]["scores"].__array__()
                else:
                    # we set the score to 1.0 if not provided
                    # increase for more weight on reference keypoints for
                    # stronger anchoring
                    kp_scores = [1.0 for _ in range(kps.shape[0])]
                # bin existing keypoints of reference images for association
                assign_keypoints(
                    kps,
                    cpdict[name],
                    conf["max_error"],
                    True,
                    bindict[name],
                    kp_scores,
                    conf["cell_size"],
                )
    return cpdict, bindict


def aggregate_matches(
    conf: Dict,
    pairs: List[Tuple[str, str]],
    match_path: Path,
    feature_path: Path,
    required_queries: Optional[Set[str]] = None,
    max_kps: Optional[int] = None,
    cpdict: Dict[str, Iterable] = defaultdict(list),
    bindict: Dict[str, List[Counter]] = defaultdict(list),
):
    if required_queries is None:
        required_queries = set(sum(pairs, ()))
        # default: do not overwrite existing features in feature_path!
        required_queries -= set(list_h5_names(feature_path))

    # if an entry in cpdict is provided as np.ndarray we assume it is fixed
    required_queries -= set([k for k, v in cpdict.items() if isinstance(v, np.ndarray)])

    # sort pairs for reduced RAM
    pairs_per_q = Counter(list(chain(*pairs)))
    pairs_score = [min(pairs_per_q[i], pairs_per_q[j]) for i, j in pairs]
    pairs = [p for _, p in sorted(zip(pairs_score, pairs))]

    if len(required_queries) > 0:
        logger.info(f"Aggregating keypoints for {len(required_queries)} images.")
    n_kps = 0
    with h5py.File(str(match_path), "a") as fd:
        for name0, name1 in tqdm(pairs, smoothing=0.1):
            pair = names_to_pair(name0, name1)
            grp = fd[pair]
            kpts0 = grp["keypoints0"].__array__()
            kpts1 = grp["keypoints1"].__array__()
            scores = grp["scores"].__array__()

            # Aggregate local features
            update0 = name0 in required_queries
            update1 = name1 in required_queries

            # in localization we do not want to bin the query kp
            # assumes that the query is name0!
            if update0 and not update1 and max_kps is None:
                max_error0 = cell_size0 = 0.0
            else:
                max_error0 = conf["max_error"]
                cell_size0 = conf["cell_size"]

            # Get match ids and extend query keypoints (cpdict)
            mkp_ids0 = assign_keypoints(
                kpts0,
                cpdict[name0],
                max_error0,
                update0,
                bindict[name0],
                scores,
                cell_size0,
            )
            mkp_ids1 = assign_keypoints(
                kpts1,
                cpdict[name1],
                conf["max_error"],
                update1,
                bindict[name1],
                scores,
                conf["cell_size"],
            )

            # Build matches from assignments
            matches0, scores0 = kpids_to_matches0(mkp_ids0, mkp_ids1, scores)

            assert kpts0.shape[0] == scores.shape[0]
            grp.create_dataset("matches0", data=matches0)
            grp.create_dataset("matching_scores0", data=scores0)

            # Convert bins to kps if finished, and store them
            for name in (name0, name1):
                pairs_per_q[name] -= 1
                if pairs_per_q[name] > 0 or name not in required_queries:
                    continue
                kp_score = [c.most_common(1)[0][1] for c in bindict[name]]
                cpdict[name] = [c.most_common(1)[0][0] for c in bindict[name]]
                cpdict[name] = np.array(cpdict[name], dtype=np.float32)

                # Select top-k query kps by score (reassign matches later)
                if max_kps:
                    top_k = min(max_kps, cpdict[name].shape[0])
                    top_k = np.argsort(kp_score)[::-1][:top_k]
                    cpdict[name] = cpdict[name][top_k]
                    kp_score = np.array(kp_score)[top_k]

                # Write query keypoints
                with h5py.File(feature_path, "a") as kfd:
                    if name in kfd:
                        del kfd[name]
                    kgrp = kfd.create_group(name)
                    kgrp.create_dataset("keypoints", data=cpdict[name])
                    kgrp.create_dataset("score", data=kp_score)
                    n_kps += cpdict[name].shape[0]
                del bindict[name]

    if len(required_queries) > 0:
        avg_kp_per_image = round(n_kps / len(required_queries), 1)
        logger.info(
            f"Finished assignment, found {avg_kp_per_image} "
            f"keypoints/image (avg.), total {n_kps}."
        )
    return cpdict


def assign_matches(
    pairs: List[Tuple[str, str]],
    match_path: Path,
    keypoints: Union[List[Path], Dict[str, np.array]],
    max_error: float,
):
    if isinstance(keypoints, list):
        keypoints = load_keypoints({}, keypoints, kpts_as_bin=set([]))
    assert len(set(sum(pairs, ())) - set(keypoints.keys())) == 0
    with h5py.File(str(match_path), "a") as fd:
        for name0, name1 in tqdm(pairs):
            pair = names_to_pair(name0, name1)
            grp = fd[pair]
            kpts0 = grp["keypoints0"].__array__()
            kpts1 = grp["keypoints1"].__array__()
            scores = grp["scores"].__array__()

            # NN search across cell boundaries
            mkp_ids0 = assign_keypoints(kpts0, keypoints[name0], max_error)
            mkp_ids1 = assign_keypoints(kpts1, keypoints[name1], max_error)

            matches0, scores0 = kpids_to_matches0(mkp_ids0, mkp_ids1, scores)

            # overwrite matches0 and matching_scores0
            del grp["matches0"], grp["matching_scores0"]
            grp.create_dataset("matches0", data=matches0)
            grp.create_dataset("matching_scores0", data=scores0)


@torch.no_grad()
def match_and_assign(
    conf: Dict,
    pairs_path: Path,
    image_dir: Path,
    match_path: Path,  # out
    feature_path_q: Path,  # out
    feature_paths_refs: Optional[List[Path]] = [],
    max_kps: Optional[int] = 8192,
    overwrite: bool = False,
) -> Path:
    for path in feature_paths_refs:
        if not path.exists():
            raise FileNotFoundError(f"Reference feature file {path}.")
    pairs = parse_retrieval(pairs_path)
    pairs = [(q, r) for q, rs in pairs.items() for r in rs]
    pairs = find_unique_new_pairs(pairs, None if overwrite else match_path)
    required_queries = set(sum(pairs, ()))

    name2ref = {
        n: i for i, p in enumerate(feature_paths_refs) for n in list_h5_names(p)
    }
    existing_refs = required_queries.intersection(set(name2ref.keys()))

    # images which require feature extraction
    required_queries = required_queries - existing_refs

    if feature_path_q.exists():
        existing_queries = set(list_h5_names(feature_path_q))
        feature_paths_refs.append(feature_path_q)
        existing_refs = set.union(existing_refs, existing_queries)
        if not overwrite:
            required_queries = required_queries - existing_queries

    if len(pairs) == 0 and len(required_queries) == 0:
        logger.info("All pairs exist. Skipping dense matching.")
        return

    # extract semi-dense matches
    match_dense(conf, pairs, image_dir, match_path, existing_refs=existing_refs)

    logger.info("Assigning matches...")

    # Pre-load existing keypoints
    cpdict, bindict = load_keypoints(
        conf, feature_paths_refs, quantize=required_queries
    )

    # Reassign matches by aggregation
    cpdict = aggregate_matches(
        conf,
        pairs,
        match_path,
        feature_path=feature_path_q,
        required_queries=required_queries,
        max_kps=max_kps,
        cpdict=cpdict,
        bindict=bindict,
    )

    # Invalidate matches that are far from selected bin by reassignment
    if max_kps is not None:
        logger.info(f'Reassign matches with max_error={conf["max_error"]}.')
        assign_matches(pairs, match_path, cpdict, max_error=conf["max_error"])

def scale_lines(lines, scale):
    if np.any(scale != 1.0):
        lines *= lines.new_tensor(scale)
    return lines


def match(model, path_0, path_1, conf):
    default_conf = {
        "grayscale": True,
        "resize_max": 1024,
        "dfactor": 8,
        "cache_images": False,
        "force_resize": False,
        "width": 320,
        "height": 240,
    }

    def preprocess(image: np.ndarray):
        image = image.astype(np.float32, copy=False)
        size = image.shape[:2][::-1]
        scale = np.array([1.0, 1.0])
        if conf.resize_max:
            scale = conf.resize_max / max(size)
            if scale < 1.0:
                size_new = tuple(int(round(x * scale)) for x in size)
                image = resize_image(image, size_new, "cv2_area")
                scale = np.array(size) / np.array(size_new)
        if conf.force_resize:
            size = image.shape[:2][::-1]
            image = resize_image(image, (conf.width, conf.height), "cv2_area")
            size_new = (conf.width, conf.height)
            scale = np.array(size) / np.array(size_new)
        if conf.grayscale:
            assert image.ndim == 2, image.shape
            image = image[None]
        else:
            image = image.transpose((2, 0, 1))  # HxWxC to CxHxW
        image = torch.from_numpy(image / 255.0).float()
        # assure that the size is divisible by dfactor
        size_new = tuple(
            map(
                lambda x: int(x // conf.dfactor * conf.dfactor),
                image.shape[-2:],
            )
        )
        image = F.resize(image, size=size_new, antialias=True)
        scale = np.array(size) / np.array(size_new)[::-1]
        return image, scale

    conf = SimpleNamespace(**{**default_conf, **conf})
    image0 = read_image(path_0, conf.grayscale)
    image1 = read_image(path_1, conf.grayscale)
    image0, scale0 = preprocess(image0)
    image1, scale1 = preprocess(image1)
    image0 = image0.to(device)[None]
    image1 = image1.to(device)[None]
    pred = model({"image0": image0, "image1": image1})

    # Rescale keypoints and move to cpu
    kpts0, kpts1 = pred["keypoints0"], pred["keypoints1"]
    kpts0 = scale_keypoints(kpts0 + 0.5, scale0) - 0.5
    kpts1 = scale_keypoints(kpts1 + 0.5, scale1) - 0.5

    ret = {
        "image0": image0.squeeze().cpu().numpy(),
        "image1": image1.squeeze().cpu().numpy(),
        "keypoints0": kpts0.cpu().numpy(),
        "keypoints1": kpts1.cpu().numpy(),
    }
    if "mconf" in pred.keys():
        ret["mconf"] = pred["mconf"].cpu().numpy()
    return ret


@torch.no_grad()
def match_images(model, image_0, image_1, conf, device="cpu"):
    default_conf = {
        "grayscale": True,
        "resize_max": 1024,
        "dfactor": 8,
        "cache_images": False,
        "force_resize": False,
        "width": 320,
        "height": 240,
    }

    def preprocess(image: np.ndarray):
        image = image.astype(np.float32, copy=False)
        size = image.shape[:2][::-1]
        scale = np.array([1.0, 1.0])
        if conf.resize_max:
            scale = conf.resize_max / max(size)
            if scale < 1.0:
                size_new = tuple(int(round(x * scale)) for x in size)
                image = resize_image(image, size_new, "cv2_area")
                scale = np.array(size) / np.array(size_new)
        if conf.force_resize:
            size = image.shape[:2][::-1]
            image = resize_image(image, (conf.width, conf.height), "cv2_area")
            size_new = (conf.width, conf.height)
            scale = np.array(size) / np.array(size_new)
        if conf.grayscale:
            assert image.ndim == 2, image.shape
            image = image[None]
        else:
            image = image.transpose((2, 0, 1))  # HxWxC to CxHxW
        image = torch.from_numpy(image / 255.0).float()

        # assure that the size is divisible by dfactor
        size_new = tuple(
            map(
                lambda x: int(x // conf.dfactor * conf.dfactor),
                image.shape[-2:],
            )
        )
        image = F.resize(image, size=size_new)
        scale = np.array(size) / np.array(size_new)[::-1]
        return image, scale

    conf = SimpleNamespace(**{**default_conf, **conf})

    if len(image_0.shape) == 3 and conf.grayscale:
        image0 = cv2.cvtColor(image_0, cv2.COLOR_RGB2GRAY)
    else:
        image0 = image_0
    if len(image_0.shape) == 3 and conf.grayscale:
        image1 = cv2.cvtColor(image_1, cv2.COLOR_RGB2GRAY)
    else:
        image1 = image_1

    # comment following lines, image is always RGB mode
    # if not conf.grayscale and len(image0.shape) == 3:
    #     image0 = image0[:, :, ::-1]  # BGR to RGB
    # if not conf.grayscale and len(image1.shape) == 3:
    #     image1 = image1[:, :, ::-1]  # BGR to RGB

    image0, scale0 = preprocess(image0)
    image1, scale1 = preprocess(image1)
    image0 = image0.to(device)[None]
    image1 = image1.to(device)[None]
    pred = model({"image0": image0, "image1": image1})

    s0 = np.array(image_0.shape[:2][::-1]) / np.array(image0.shape[-2:][::-1])
    s1 = np.array(image_1.shape[:2][::-1]) / np.array(image1.shape[-2:][::-1])

    # Rescale keypoints and move to cpu
    if "keypoints0" in pred.keys() and "keypoints1" in pred.keys():
        kpts0, kpts1 = pred["keypoints0"], pred["keypoints1"]
        kpts0_origin = scale_keypoints(kpts0 + 0.5, s0) - 0.5
        kpts1_origin = scale_keypoints(kpts1 + 0.5, s1) - 0.5

        ret = {
            "image0": image0.squeeze().cpu().numpy(),
            "image1": image1.squeeze().cpu().numpy(),
            "image0_orig": image_0,
            "image1_orig": image_1,
            "keypoints0": kpts0.cpu().numpy(),
            "keypoints1": kpts1.cpu().numpy(),
            "keypoints0_orig": kpts0_origin.cpu().numpy(),
            "keypoints1_orig": kpts1_origin.cpu().numpy(),
            "mkeypoints0": kpts0.cpu().numpy(),
            "mkeypoints1": kpts1.cpu().numpy(),
            "mkeypoints0_orig": kpts0_origin.cpu().numpy(),
            "mkeypoints1_orig": kpts1_origin.cpu().numpy(),
            "original_size0": np.array(image_0.shape[:2][::-1]),
            "original_size1": np.array(image_1.shape[:2][::-1]),
            "new_size0": np.array(image0.shape[-2:][::-1]),
            "new_size1": np.array(image1.shape[-2:][::-1]),
            "scale0": s0,
            "scale1": s1,
        }
        if "mconf" in pred.keys():
            ret["mconf"] = pred["mconf"].cpu().numpy()
        elif "scores" in pred.keys():  # adapting loftr
            ret["mconf"] = pred["scores"].cpu().numpy()
        else:
            ret["mconf"] = np.ones_like(kpts0.cpu().numpy()[:, 0])
    if "lines0" in pred.keys() and "lines1" in pred.keys():
        if "keypoints0" in pred.keys() and "keypoints1" in pred.keys():
            kpts0, kpts1 = pred["keypoints0"], pred["keypoints1"]
            kpts0_origin = scale_keypoints(kpts0 + 0.5, s0) - 0.5
            kpts1_origin = scale_keypoints(kpts1 + 0.5, s1) - 0.5
            kpts0_origin = kpts0_origin.cpu().numpy()
            kpts1_origin = kpts1_origin.cpu().numpy()
        else:
            kpts0_origin, kpts1_origin = (
                None,
                None,
            )  # np.zeros([0]), np.zeros([0])
        lines0, lines1 = pred["lines0"], pred["lines1"]
        lines0_raw, lines1_raw = pred["raw_lines0"], pred["raw_lines1"]

        lines0_raw = torch.from_numpy(lines0_raw.copy())
        lines1_raw = torch.from_numpy(lines1_raw.copy())
        lines0_raw = scale_lines(lines0_raw + 0.5, s0) - 0.5
        lines1_raw = scale_lines(lines1_raw + 0.5, s1) - 0.5

        lines0 = torch.from_numpy(lines0.copy())
        lines1 = torch.from_numpy(lines1.copy())
        lines0 = scale_lines(lines0 + 0.5, s0) - 0.5
        lines1 = scale_lines(lines1 + 0.5, s1) - 0.5

        ret = {
            "image0_orig": image_0,
            "image1_orig": image_1,
            "line0": lines0_raw.cpu().numpy(),
            "line1": lines1_raw.cpu().numpy(),
            "line0_orig": lines0.cpu().numpy(),
            "line1_orig": lines1.cpu().numpy(),
            "line_keypoints0_orig": kpts0_origin,
            "line_keypoints1_orig": kpts1_origin,
        }
    del pred
    torch.cuda.empty_cache()
    return ret

@torch.no_grad()
def main(
    conf: Dict,
    pairs: Path,
    image_dir: Path,
    export_dir: Optional[Path] = None,
    matches: Optional[Path] = None,  # out
    features: Optional[Path] = None,  # out
    features_ref: Optional[Path] = None,
    max_kps: Optional[int] = 8192,
    overwrite: bool = False,
) -> Path:
    logger.info(
        "Extracting semi-dense features with configuration:" f"\n{pprint.pformat(conf)}"
    )

    if features is None:
        features = "feats_"

    if isinstance(features, Path):
        features_q = features
        if matches is None:
            raise ValueError(
                "Either provide both features and matches as Path" " or both as names."
            )
    else:
        if export_dir is None:
            raise ValueError(
                "Provide an export_dir if features and matches"
                f" are not file paths: {features}, {matches}."
            )
        features_q = Path(export_dir, f'{features}{conf["output"]}.h5')
        if matches is None:
            matches = Path(export_dir, f'{conf["output"]}_{pairs.stem}.h5')

    if features_ref is None:
        features_ref = []
    elif isinstance(features_ref, list):
        features_ref = list(features_ref)
    elif isinstance(features_ref, Path):
        features_ref = [features_ref]
    else:
        raise TypeError(str(features_ref))

    match_and_assign(
        conf, pairs, image_dir, matches, features_q, features_ref, max_kps, overwrite
    )

    return features_q, matches


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--pairs", type=Path, required=True)
    parser.add_argument("--image_dir", type=Path, required=True)
    parser.add_argument("--export_dir", type=Path, required=True)
    parser.add_argument("--matches", type=Path, default=confs["loftr"]["output"])
    parser.add_argument(
        "--features", type=str, default="feats_" + confs["loftr"]["output"]
    )
    parser.add_argument("--conf", type=str, default="loftr", choices=list(confs.keys()))
    args = parser.parse_args()
    main(
        confs[args.conf],
        args.pairs,
        args.image_dir,
        args.export_dir,
        args.matches,
        args.features,
    )