Spaces:
Sleeping
Sleeping
File size: 18,127 Bytes
6ba5875 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
#! /usr/bin/env python3
#
# %BANNER_BEGIN%
# ---------------------------------------------------------------------
# %COPYRIGHT_BEGIN%
#
# Magic Leap, Inc. ("COMPANY") CONFIDENTIAL
#
# Unpublished Copyright (c) 2020
# Magic Leap, Inc., All Rights Reserved.
#
# NOTICE: All information contained herein is, and remains the property
# of COMPANY. The intellectual and technical concepts contained herein
# are proprietary to COMPANY and may be covered by U.S. and Foreign
# Patents, patents in process, and are protected by trade secret or
# copyright law. Dissemination of this information or reproduction of
# this material is strictly forbidden unless prior written permission is
# obtained from COMPANY. Access to the source code contained herein is
# hereby forbidden to anyone except current COMPANY employees, managers
# or contractors who have executed Confidentiality and Non-disclosure
# agreements explicitly covering such access.
#
# The copyright notice above does not evidence any actual or intended
# publication or disclosure of this source code, which includes
# information that is confidential and/or proprietary, and is a trade
# secret, of COMPANY. ANY REPRODUCTION, MODIFICATION, DISTRIBUTION,
# PUBLIC PERFORMANCE, OR PUBLIC DISPLAY OF OR THROUGH USE OF THIS
# SOURCE CODE WITHOUT THE EXPRESS WRITTEN CONSENT OF COMPANY IS
# STRICTLY PROHIBITED, AND IN VIOLATION OF APPLICABLE LAWS AND
# INTERNATIONAL TREATIES. THE RECEIPT OR POSSESSION OF THIS SOURCE
# CODE AND/OR RELATED INFORMATION DOES NOT CONVEY OR IMPLY ANY RIGHTS
# TO REPRODUCE, DISCLOSE OR DISTRIBUTE ITS CONTENTS, OR TO MANUFACTURE,
# USE, OR SELL ANYTHING THAT IT MAY DESCRIBE, IN WHOLE OR IN PART.
#
# %COPYRIGHT_END%
# ----------------------------------------------------------------------
# %AUTHORS_BEGIN%
#
# Originating Authors: Paul-Edouard Sarlin
# Daniel DeTone
# Tomasz Malisiewicz
#
# %AUTHORS_END%
# --------------------------------------------------------------------*/
# %BANNER_END%
from pathlib import Path
import argparse
import random
import numpy as np
import matplotlib.cm as cm
import torch
from models.matching import Matching
from models.utils import (compute_pose_error, compute_epipolar_error,
estimate_pose, make_matching_plot,
error_colormap, AverageTimer, pose_auc, read_image,
rotate_intrinsics, rotate_pose_inplane,
scale_intrinsics)
torch.set_grad_enabled(False)
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Image pair matching and pose evaluation with SuperGlue',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
'--input_pairs', type=str, default='assets/scannet_sample_pairs_with_gt.txt',
help='Path to the list of image pairs')
parser.add_argument(
'--input_dir', type=str, default='assets/scannet_sample_images/',
help='Path to the directory that contains the images')
parser.add_argument(
'--output_dir', type=str, default='dump_match_pairs/',
help='Path to the directory in which the .npz results and optionally,'
'the visualization images are written')
parser.add_argument(
'--max_length', type=int, default=-1,
help='Maximum number of pairs to evaluate')
parser.add_argument(
'--resize', type=int, nargs='+', default=[640, 480],
help='Resize the input image before running inference. If two numbers, '
'resize to the exact dimensions, if one number, resize the max '
'dimension, if -1, do not resize')
parser.add_argument(
'--resize_float', action='store_true',
help='Resize the image after casting uint8 to float')
parser.add_argument(
'--superglue', choices={'indoor', 'outdoor'}, default='indoor',
help='SuperGlue weights')
parser.add_argument(
'--max_keypoints', type=int, default=1024,
help='Maximum number of keypoints detected by Superpoint'
' (\'-1\' keeps all keypoints)')
parser.add_argument(
'--keypoint_threshold', type=float, default=0.005,
help='SuperPoint keypoint detector confidence threshold')
parser.add_argument(
'--nms_radius', type=int, default=4,
help='SuperPoint Non Maximum Suppression (NMS) radius'
' (Must be positive)')
parser.add_argument(
'--sinkhorn_iterations', type=int, default=20,
help='Number of Sinkhorn iterations performed by SuperGlue')
parser.add_argument(
'--match_threshold', type=float, default=0.2,
help='SuperGlue match threshold')
parser.add_argument(
'--viz', action='store_true',
help='Visualize the matches and dump the plots')
parser.add_argument(
'--eval', action='store_true',
help='Perform the evaluation'
' (requires ground truth pose and intrinsics)')
parser.add_argument(
'--fast_viz', action='store_true',
help='Use faster image visualization with OpenCV instead of Matplotlib')
parser.add_argument(
'--cache', action='store_true',
help='Skip the pair if output .npz files are already found')
parser.add_argument(
'--show_keypoints', action='store_true',
help='Plot the keypoints in addition to the matches')
parser.add_argument(
'--viz_extension', type=str, default='png', choices=['png', 'pdf'],
help='Visualization file extension. Use pdf for highest-quality.')
parser.add_argument(
'--opencv_display', action='store_true',
help='Visualize via OpenCV before saving output images')
parser.add_argument(
'--shuffle', action='store_true',
help='Shuffle ordering of pairs before processing')
parser.add_argument(
'--force_cpu', action='store_true',
help='Force pytorch to run in CPU mode.')
opt = parser.parse_args()
print(opt)
assert not (opt.opencv_display and not opt.viz), 'Must use --viz with --opencv_display'
assert not (opt.opencv_display and not opt.fast_viz), 'Cannot use --opencv_display without --fast_viz'
assert not (opt.fast_viz and not opt.viz), 'Must use --viz with --fast_viz'
assert not (opt.fast_viz and opt.viz_extension == 'pdf'), 'Cannot use pdf extension with --fast_viz'
if len(opt.resize) == 2 and opt.resize[1] == -1:
opt.resize = opt.resize[0:1]
if len(opt.resize) == 2:
print('Will resize to {}x{} (WxH)'.format(
opt.resize[0], opt.resize[1]))
elif len(opt.resize) == 1 and opt.resize[0] > 0:
print('Will resize max dimension to {}'.format(opt.resize[0]))
elif len(opt.resize) == 1:
print('Will not resize images')
else:
raise ValueError('Cannot specify more than two integers for --resize')
with open(opt.input_pairs, 'r') as f:
pairs = [l.split() for l in f.readlines()]
if opt.max_length > -1:
pairs = pairs[0:np.min([len(pairs), opt.max_length])]
if opt.shuffle:
random.Random(0).shuffle(pairs)
if opt.eval:
if not all([len(p) == 38 for p in pairs]):
raise ValueError(
'All pairs should have ground truth info for evaluation.'
'File \"{}\" needs 38 valid entries per row'.format(opt.input_pairs))
# Load the SuperPoint and SuperGlue models.
device = 'cuda' if torch.cuda.is_available() and not opt.force_cpu else 'cpu'
print('Running inference on device \"{}\"'.format(device))
config = {
'superpoint': {
'nms_radius': opt.nms_radius,
'keypoint_threshold': opt.keypoint_threshold,
'max_keypoints': opt.max_keypoints
},
'superglue': {
'weights': opt.superglue,
'sinkhorn_iterations': opt.sinkhorn_iterations,
'match_threshold': opt.match_threshold,
}
}
matching = Matching(config).eval().to(device)
# Create the output directories if they do not exist already.
input_dir = Path(opt.input_dir)
print('Looking for data in directory \"{}\"'.format(input_dir))
output_dir = Path(opt.output_dir)
output_dir.mkdir(exist_ok=True, parents=True)
print('Will write matches to directory \"{}\"'.format(output_dir))
if opt.eval:
print('Will write evaluation results',
'to directory \"{}\"'.format(output_dir))
if opt.viz:
print('Will write visualization images to',
'directory \"{}\"'.format(output_dir))
timer = AverageTimer(newline=True)
for i, pair in enumerate(pairs):
name0, name1 = pair[:2]
stem0, stem1 = Path(name0).stem, Path(name1).stem
matches_path = output_dir / '{}_{}_matches.npz'.format(stem0, stem1)
eval_path = output_dir / '{}_{}_evaluation.npz'.format(stem0, stem1)
viz_path = output_dir / '{}_{}_matches.{}'.format(stem0, stem1, opt.viz_extension)
viz_eval_path = output_dir / \
'{}_{}_evaluation.{}'.format(stem0, stem1, opt.viz_extension)
# Handle --cache logic.
do_match = True
do_eval = opt.eval
do_viz = opt.viz
do_viz_eval = opt.eval and opt.viz
if opt.cache:
if matches_path.exists():
try:
results = np.load(matches_path)
except:
raise IOError('Cannot load matches .npz file: %s' %
matches_path)
kpts0, kpts1 = results['keypoints0'], results['keypoints1']
matches, conf = results['matches'], results['match_confidence']
do_match = False
if opt.eval and eval_path.exists():
try:
results = np.load(eval_path)
except:
raise IOError('Cannot load eval .npz file: %s' % eval_path)
err_R, err_t = results['error_R'], results['error_t']
precision = results['precision']
matching_score = results['matching_score']
num_correct = results['num_correct']
epi_errs = results['epipolar_errors']
do_eval = False
if opt.viz and viz_path.exists():
do_viz = False
if opt.viz and opt.eval and viz_eval_path.exists():
do_viz_eval = False
timer.update('load_cache')
if not (do_match or do_eval or do_viz or do_viz_eval):
timer.print('Finished pair {:5} of {:5}'.format(i, len(pairs)))
continue
# If a rotation integer is provided (e.g. from EXIF data), use it:
if len(pair) >= 5:
rot0, rot1 = int(pair[2]), int(pair[3])
else:
rot0, rot1 = 0, 0
# Load the image pair.
image0, inp0, scales0 = read_image(
input_dir / name0, device, opt.resize, rot0, opt.resize_float)
image1, inp1, scales1 = read_image(
input_dir / name1, device, opt.resize, rot1, opt.resize_float)
if image0 is None or image1 is None:
print('Problem reading image pair: {} {}'.format(
input_dir/name0, input_dir/name1))
exit(1)
timer.update('load_image')
if do_match:
# Perform the matching.
pred = matching({'image0': inp0, 'image1': inp1})
pred = {k: v[0].cpu().numpy() for k, v in pred.items()}
kpts0, kpts1 = pred['keypoints0'], pred['keypoints1']
matches, conf = pred['matches0'], pred['matching_scores0']
timer.update('matcher')
# Write the matches to disk.
out_matches = {'keypoints0': kpts0, 'keypoints1': kpts1,
'matches': matches, 'match_confidence': conf}
np.savez(str(matches_path), **out_matches)
# Keep the matching keypoints.
valid = matches > -1
mkpts0 = kpts0[valid]
mkpts1 = kpts1[matches[valid]]
mconf = conf[valid]
if do_eval:
# Estimate the pose and compute the pose error.
assert len(pair) == 38, 'Pair does not have ground truth info'
K0 = np.array(pair[4:13]).astype(float).reshape(3, 3)
K1 = np.array(pair[13:22]).astype(float).reshape(3, 3)
T_0to1 = np.array(pair[22:]).astype(float).reshape(4, 4)
# Scale the intrinsics to resized image.
K0 = scale_intrinsics(K0, scales0)
K1 = scale_intrinsics(K1, scales1)
# Update the intrinsics + extrinsics if EXIF rotation was found.
if rot0 != 0 or rot1 != 0:
cam0_T_w = np.eye(4)
cam1_T_w = T_0to1
if rot0 != 0:
K0 = rotate_intrinsics(K0, image0.shape, rot0)
cam0_T_w = rotate_pose_inplane(cam0_T_w, rot0)
if rot1 != 0:
K1 = rotate_intrinsics(K1, image1.shape, rot1)
cam1_T_w = rotate_pose_inplane(cam1_T_w, rot1)
cam1_T_cam0 = cam1_T_w @ np.linalg.inv(cam0_T_w)
T_0to1 = cam1_T_cam0
epi_errs = compute_epipolar_error(mkpts0, mkpts1, T_0to1, K0, K1)
correct = epi_errs < 5e-4
num_correct = np.sum(correct)
precision = np.mean(correct) if len(correct) > 0 else 0
matching_score = num_correct / len(kpts0) if len(kpts0) > 0 else 0
thresh = 1. # In pixels relative to resized image size.
ret = estimate_pose(mkpts0, mkpts1, K0, K1, thresh)
if ret is None:
err_t, err_R = np.inf, np.inf
else:
R, t, inliers = ret
err_t, err_R = compute_pose_error(T_0to1, R, t)
# Write the evaluation results to disk.
out_eval = {'error_t': err_t,
'error_R': err_R,
'precision': precision,
'matching_score': matching_score,
'num_correct': num_correct,
'epipolar_errors': epi_errs}
np.savez(str(eval_path), **out_eval)
timer.update('eval')
if do_viz:
# Visualize the matches.
color = cm.jet(mconf)
text = [
'SuperGlue',
'Keypoints: {}:{}'.format(len(kpts0), len(kpts1)),
'Matches: {}'.format(len(mkpts0)),
]
if rot0 != 0 or rot1 != 0:
text.append('Rotation: {}:{}'.format(rot0, rot1))
# Display extra parameter info.
k_thresh = matching.superpoint.config['keypoint_threshold']
m_thresh = matching.superglue.config['match_threshold']
small_text = [
'Keypoint Threshold: {:.4f}'.format(k_thresh),
'Match Threshold: {:.2f}'.format(m_thresh),
'Image Pair: {}:{}'.format(stem0, stem1),
]
make_matching_plot(
image0, image1, kpts0, kpts1, mkpts0, mkpts1, color,
text, viz_path, opt.show_keypoints,
opt.fast_viz, opt.opencv_display, 'Matches', small_text)
timer.update('viz_match')
if do_viz_eval:
# Visualize the evaluation results for the image pair.
color = np.clip((epi_errs - 0) / (1e-3 - 0), 0, 1)
color = error_colormap(1 - color)
deg, delta = ' deg', 'Delta '
if not opt.fast_viz:
deg, delta = '°', '$\\Delta$'
e_t = 'FAIL' if np.isinf(err_t) else '{:.1f}{}'.format(err_t, deg)
e_R = 'FAIL' if np.isinf(err_R) else '{:.1f}{}'.format(err_R, deg)
text = [
'SuperGlue',
'{}R: {}'.format(delta, e_R), '{}t: {}'.format(delta, e_t),
'inliers: {}/{}'.format(num_correct, (matches > -1).sum()),
]
if rot0 != 0 or rot1 != 0:
text.append('Rotation: {}:{}'.format(rot0, rot1))
# Display extra parameter info (only works with --fast_viz).
k_thresh = matching.superpoint.config['keypoint_threshold']
m_thresh = matching.superglue.config['match_threshold']
small_text = [
'Keypoint Threshold: {:.4f}'.format(k_thresh),
'Match Threshold: {:.2f}'.format(m_thresh),
'Image Pair: {}:{}'.format(stem0, stem1),
]
make_matching_plot(
image0, image1, kpts0, kpts1, mkpts0,
mkpts1, color, text, viz_eval_path,
opt.show_keypoints, opt.fast_viz,
opt.opencv_display, 'Relative Pose', small_text)
timer.update('viz_eval')
timer.print('Finished pair {:5} of {:5}'.format(i, len(pairs)))
if opt.eval:
# Collate the results into a final table and print to terminal.
pose_errors = []
precisions = []
matching_scores = []
for pair in pairs:
name0, name1 = pair[:2]
stem0, stem1 = Path(name0).stem, Path(name1).stem
eval_path = output_dir / \
'{}_{}_evaluation.npz'.format(stem0, stem1)
results = np.load(eval_path)
pose_error = np.maximum(results['error_t'], results['error_R'])
pose_errors.append(pose_error)
precisions.append(results['precision'])
matching_scores.append(results['matching_score'])
thresholds = [5, 10, 20]
aucs = pose_auc(pose_errors, thresholds)
aucs = [100.*yy for yy in aucs]
prec = 100.*np.mean(precisions)
ms = 100.*np.mean(matching_scores)
print('Evaluation Results (mean over {} pairs):'.format(len(pairs)))
print('AUC@5\t AUC@10\t AUC@20\t Prec\t MScore\t')
print('{:.2f}\t {:.2f}\t {:.2f}\t {:.2f}\t {:.2f}\t'.format(
aucs[0], aucs[1], aucs[2], prec, ms))
|