Spaces:
Sleeping
Sleeping
File size: 6,346 Bytes
a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
"""
A two-view sparse feature matching pipeline.
This model contains sub-models for each step:
feature extraction, feature matching, outlier filtering, pose estimation.
Each step is optional, and the features or matches can be provided as input.
Default: SuperPoint with nearest neighbor matching.
Convention for the matches: m0[i] is the index of the keypoint in image 1
that corresponds to the keypoint i in image 0. m0[i] = -1 if i is unmatched.
"""
import numpy as np
import torch
from .. import get_model
from .base_model import BaseModel
def keep_quadrant_kp_subset(keypoints, scores, descs, h, w):
"""Keep only keypoints in one of the four quadrant of the image."""
h2, w2 = h // 2, w // 2
w_x = np.random.choice([0, w2])
w_y = np.random.choice([0, h2])
valid_mask = (
(keypoints[..., 0] >= w_x)
& (keypoints[..., 0] < w_x + w2)
& (keypoints[..., 1] >= w_y)
& (keypoints[..., 1] < w_y + h2)
)
keypoints = keypoints[valid_mask][None]
scores = scores[valid_mask][None]
descs = descs.permute(0, 2, 1)[valid_mask].t()[None]
return keypoints, scores, descs
def keep_random_kp_subset(keypoints, scores, descs, num_selected):
"""Keep a random subset of keypoints."""
num_kp = keypoints.shape[1]
selected_kp = torch.randperm(num_kp)[:num_selected]
keypoints = keypoints[:, selected_kp]
scores = scores[:, selected_kp]
descs = descs[:, :, selected_kp]
return keypoints, scores, descs
def keep_best_kp_subset(keypoints, scores, descs, num_selected):
"""Keep the top num_selected best keypoints."""
sorted_indices = torch.sort(scores, dim=1)[1]
selected_kp = sorted_indices[:, -num_selected:]
keypoints = torch.gather(keypoints, 1, selected_kp[:, :, None].repeat(1, 1, 2))
scores = torch.gather(scores, 1, selected_kp)
descs = torch.gather(descs, 2, selected_kp[:, None].repeat(1, descs.shape[1], 1))
return keypoints, scores, descs
class TwoViewPipeline(BaseModel):
default_conf = {
"extractor": {
"name": "superpoint",
"trainable": False,
},
"use_lines": False,
"use_points": True,
"randomize_num_kp": False,
"detector": {"name": None},
"descriptor": {"name": None},
"matcher": {"name": "nearest_neighbor_matcher"},
"filter": {"name": None},
"solver": {"name": None},
"ground_truth": {
"from_pose_depth": False,
"from_homography": False,
"th_positive": 3,
"th_negative": 5,
"reward_positive": 1,
"reward_negative": -0.25,
"is_likelihood_soft": True,
"p_random_occluders": 0,
"n_line_sampled_pts": 50,
"line_perp_dist_th": 5,
"overlap_th": 0.2,
"min_visibility_th": 0.5,
},
}
required_data_keys = ["image0", "image1"]
strict_conf = False # need to pass new confs to children models
components = ["extractor", "detector", "descriptor", "matcher", "filter", "solver"]
def _init(self, conf):
if conf.extractor.name:
self.extractor = get_model(conf.extractor.name)(conf.extractor)
else:
if self.conf.detector.name:
self.detector = get_model(conf.detector.name)(conf.detector)
else:
self.required_data_keys += ["keypoints0", "keypoints1"]
if self.conf.descriptor.name:
self.descriptor = get_model(conf.descriptor.name)(conf.descriptor)
else:
self.required_data_keys += ["descriptors0", "descriptors1"]
if conf.matcher.name:
self.matcher = get_model(conf.matcher.name)(conf.matcher)
else:
self.required_data_keys += ["matches0"]
if conf.filter.name:
self.filter = get_model(conf.filter.name)(conf.filter)
if conf.solver.name:
self.solver = get_model(conf.solver.name)(conf.solver)
def _forward(self, data):
def process_siamese(data, i):
data_i = {k[:-1]: v for k, v in data.items() if k[-1] == i}
if self.conf.extractor.name:
pred_i = self.extractor(data_i)
else:
pred_i = {}
if self.conf.detector.name:
pred_i = self.detector(data_i)
else:
for k in [
"keypoints",
"keypoint_scores",
"descriptors",
"lines",
"line_scores",
"line_descriptors",
"valid_lines",
]:
if k in data_i:
pred_i[k] = data_i[k]
if self.conf.descriptor.name:
pred_i = {**pred_i, **self.descriptor({**data_i, **pred_i})}
return pred_i
pred0 = process_siamese(data, "0")
pred1 = process_siamese(data, "1")
pred = {
**{k + "0": v for k, v in pred0.items()},
**{k + "1": v for k, v in pred1.items()},
}
if self.conf.matcher.name:
pred = {**pred, **self.matcher({**data, **pred})}
if self.conf.filter.name:
pred = {**pred, **self.filter({**data, **pred})}
if self.conf.solver.name:
pred = {**pred, **self.solver({**data, **pred})}
return pred
def loss(self, pred, data):
losses = {}
total = 0
for k in self.components:
if self.conf[k].name:
try:
losses_ = getattr(self, k).loss(pred, {**pred, **data})
except NotImplementedError:
continue
losses = {**losses, **losses_}
total = losses_["total"] + total
return {**losses, "total": total}
def metrics(self, pred, data):
metrics = {}
for k in self.components:
if self.conf[k].name:
try:
metrics_ = getattr(self, k).metrics(pred, {**pred, **data})
except NotImplementedError:
continue
metrics = {**metrics, **metrics_}
return metrics
|