Spaces:
Sleeping
Sleeping
File size: 27,423 Bytes
4d4dd90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 |
"""
A generic training script that works with any model and dataset.
Author: Paul-Edouard Sarlin (skydes)
"""
import argparse
import copy
import re
import shutil
import signal
from collections import defaultdict
from pathlib import Path
from pydoc import locate
import numpy as np
import torch
from omegaconf import OmegaConf
from torch.cuda.amp import GradScaler, autocast
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
from . import __module_name__, logger
from .datasets import get_dataset
from .eval import run_benchmark
from .models import get_model
from .settings import EVAL_PATH, TRAINING_PATH
from .utils.experiments import get_best_checkpoint, get_last_checkpoint, save_experiment
from .utils.stdout_capturing import capture_outputs
from .utils.tensor import batch_to_device
from .utils.tools import (
AverageMetric,
MedianMetric,
PRMetric,
RecallMetric,
fork_rng,
set_seed,
)
# @TODO: Fix pbar pollution in logs
# @TODO: add plotting during evaluation
default_train_conf = {
"seed": "???", # training seed
"epochs": 1, # number of epochs
"optimizer": "adam", # name of optimizer in [adam, sgd, rmsprop]
"opt_regexp": None, # regular expression to filter parameters to optimize
"optimizer_options": {}, # optional arguments passed to the optimizer
"lr": 0.001, # learning rate
"lr_schedule": {
"type": None, # string in {factor, exp, member of torch.optim.lr_scheduler}
"start": 0,
"exp_div_10": 0,
"on_epoch": False,
"factor": 1.0,
"options": {}, # add lr_scheduler arguments here
},
"lr_scaling": [(100, ["dampingnet.const"])],
"eval_every_iter": 1000, # interval for evaluation on the validation set
"save_every_iter": 5000, # interval for saving the current checkpoint
"log_every_iter": 200, # interval for logging the loss to the console
"log_grad_every_iter": None, # interval for logging gradient hists
"test_every_epoch": 1, # interval for evaluation on the test benchmarks
"keep_last_checkpoints": 10, # keep only the last X checkpoints
"load_experiment": None, # initialize the model from a previous experiment
"median_metrics": [], # add the median of some metrics
"recall_metrics": {}, # add the recall of some metrics
"pr_metrics": {}, # add pr curves, set labels/predictions/mask keys
"best_key": "loss/total", # key to use to select the best checkpoint
"dataset_callback_fn": None, # data func called at the start of each epoch
"dataset_callback_on_val": False, # call data func on val data?
"clip_grad": None,
"pr_curves": {},
"plot": None,
"submodules": [],
}
default_train_conf = OmegaConf.create(default_train_conf)
@torch.no_grad()
def do_evaluation(model, loader, device, loss_fn, conf, pbar=True):
model.eval()
results = {}
pr_metrics = defaultdict(PRMetric)
figures = []
if conf.plot is not None:
n, plot_fn = conf.plot
plot_ids = np.random.choice(len(loader), min(len(loader), n), replace=False)
for i, data in enumerate(
tqdm(loader, desc="Evaluation", ascii=True, disable=not pbar)
):
data = batch_to_device(data, device, non_blocking=True)
with torch.no_grad():
pred = model(data)
losses, metrics = loss_fn(pred, data)
if conf.plot is not None and i in plot_ids:
figures.append(locate(plot_fn)(pred, data))
# add PR curves
for k, v in conf.pr_curves.items():
pr_metrics[k].update(
pred[v["labels"]],
pred[v["predictions"]],
mask=pred[v["mask"]] if "mask" in v.keys() else None,
)
del pred, data
numbers = {**metrics, **{"loss/" + k: v for k, v in losses.items()}}
for k, v in numbers.items():
if k not in results:
results[k] = AverageMetric()
if k in conf.median_metrics:
results[k + "_median"] = MedianMetric()
if k in conf.recall_metrics.keys():
q = conf.recall_metrics[k]
results[k + f"_recall{int(q)}"] = RecallMetric(q)
results[k].update(v)
if k in conf.median_metrics:
results[k + "_median"].update(v)
if k in conf.recall_metrics.keys():
q = conf.recall_metrics[k]
results[k + f"_recall{int(q)}"].update(v)
del numbers
results = {k: results[k].compute() for k in results}
return results, {k: v.compute() for k, v in pr_metrics.items()}, figures
def filter_parameters(params, regexp):
"""Filter trainable parameters based on regular expressions."""
# Examples of regexp:
# '.*(weight|bias)$'
# 'cnn\.(enc0|enc1).*bias'
def filter_fn(x):
n, p = x
match = re.search(regexp, n)
if not match:
p.requires_grad = False
return match
params = list(filter(filter_fn, params))
assert len(params) > 0, regexp
logger.info("Selected parameters:\n" + "\n".join(n for n, p in params))
return params
def get_lr_scheduler(optimizer, conf):
"""Get lr scheduler specified by conf.train.lr_schedule."""
if conf.type not in ["factor", "exp", None]:
return getattr(torch.optim.lr_scheduler, conf.type)(optimizer, **conf.options)
# backward compatibility
def lr_fn(it): # noqa: E306
if conf.type is None:
return 1
if conf.type == "factor":
return 1.0 if it < conf.start else conf.factor
if conf.type == "exp":
gam = 10 ** (-1 / conf.exp_div_10)
return 1.0 if it < conf.start else gam
else:
raise ValueError(conf.type)
return torch.optim.lr_scheduler.MultiplicativeLR(optimizer, lr_fn)
def pack_lr_parameters(params, base_lr, lr_scaling):
"""Pack each group of parameters with the respective scaled learning rate."""
filters, scales = tuple(zip(*[(n, s) for s, names in lr_scaling for n in names]))
scale2params = defaultdict(list)
for n, p in params:
scale = 1
# TODO: use proper regexp rather than just this inclusion check
is_match = [f in n for f in filters]
if any(is_match):
scale = scales[is_match.index(True)]
scale2params[scale].append((n, p))
logger.info(
"Parameters with scaled learning rate:\n%s",
{s: [n for n, _ in ps] for s, ps in scale2params.items() if s != 1},
)
lr_params = [
{"lr": scale * base_lr, "params": [p for _, p in ps]}
for scale, ps in scale2params.items()
]
return lr_params
def training(rank, conf, output_dir, args):
if args.restore:
logger.info(f"Restoring from previous training of {args.experiment}")
try:
init_cp = get_last_checkpoint(args.experiment, allow_interrupted=False)
except AssertionError:
init_cp = get_best_checkpoint(args.experiment)
logger.info(f"Restoring from checkpoint {init_cp.name}")
init_cp = torch.load(str(init_cp), map_location="cpu")
conf = OmegaConf.merge(OmegaConf.create(init_cp["conf"]), conf)
conf.train = OmegaConf.merge(default_train_conf, conf.train)
epoch = init_cp["epoch"] + 1
# get the best loss or eval metric from the previous best checkpoint
best_cp = get_best_checkpoint(args.experiment)
best_cp = torch.load(str(best_cp), map_location="cpu")
best_eval = best_cp["eval"][conf.train.best_key]
del best_cp
else:
# we start a new, fresh training
conf.train = OmegaConf.merge(default_train_conf, conf.train)
epoch = 0
best_eval = float("inf")
if conf.train.load_experiment:
logger.info(f"Will fine-tune from weights of {conf.train.load_experiment}")
# the user has to make sure that the weights are compatible
try:
init_cp = get_last_checkpoint(conf.train.load_experiment)
except AssertionError:
init_cp = get_best_checkpoint(conf.train.load_experiment)
# init_cp = get_last_checkpoint(conf.train.load_experiment)
init_cp = torch.load(str(init_cp), map_location="cpu")
# load the model config of the old setup, and overwrite with current config
conf.model = OmegaConf.merge(
OmegaConf.create(init_cp["conf"]).model, conf.model
)
print(conf.model)
else:
init_cp = None
OmegaConf.set_struct(conf, True) # prevent access to unknown entries
set_seed(conf.train.seed)
if rank == 0:
writer = SummaryWriter(log_dir=str(output_dir))
data_conf = copy.deepcopy(conf.data)
if args.distributed:
logger.info(f"Training in distributed mode with {args.n_gpus} GPUs")
assert torch.cuda.is_available()
device = rank
torch.distributed.init_process_group(
backend="nccl",
world_size=args.n_gpus,
rank=device,
init_method="file://" + str(args.lock_file),
)
torch.cuda.set_device(device)
# adjust batch size and num of workers since these are per GPU
if "batch_size" in data_conf:
data_conf.batch_size = int(data_conf.batch_size / args.n_gpus)
if "train_batch_size" in data_conf:
data_conf.train_batch_size = int(data_conf.train_batch_size / args.n_gpus)
if "num_workers" in data_conf:
data_conf.num_workers = int(
(data_conf.num_workers + args.n_gpus - 1) / args.n_gpus
)
else:
device = "cuda" if torch.cuda.is_available() else "cpu"
logger.info(f"Using device {device}")
dataset = get_dataset(data_conf.name)(data_conf)
# Optionally load a different validation dataset than the training one
val_data_conf = conf.get("data_val", None)
if val_data_conf is None:
val_dataset = dataset
else:
val_dataset = get_dataset(val_data_conf.name)(val_data_conf)
# @TODO: add test data loader
if args.overfit:
# we train and eval with the same single training batch
logger.info("Data in overfitting mode")
assert not args.distributed
train_loader = dataset.get_overfit_loader("train")
val_loader = val_dataset.get_overfit_loader("val")
else:
train_loader = dataset.get_data_loader("train", distributed=args.distributed)
val_loader = val_dataset.get_data_loader("val")
if rank == 0:
logger.info(f"Training loader has {len(train_loader)} batches")
logger.info(f"Validation loader has {len(val_loader)} batches")
# interrupts are caught and delayed for graceful termination
def sigint_handler(signal, frame):
logger.info("Caught keyboard interrupt signal, will terminate")
nonlocal stop
if stop:
raise KeyboardInterrupt
stop = True
stop = False
signal.signal(signal.SIGINT, sigint_handler)
model = get_model(conf.model.name)(conf.model).to(device)
if args.compile:
model = torch.compile(model, mode=args.compile)
loss_fn = model.loss
if init_cp is not None:
model.load_state_dict(init_cp["model"], strict=False)
if args.distributed:
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[device])
if rank == 0 and args.print_arch:
logger.info(f"Model: \n{model}")
torch.backends.cudnn.benchmark = True
if args.detect_anomaly:
torch.autograd.set_detect_anomaly(True)
optimizer_fn = {
"sgd": torch.optim.SGD,
"adam": torch.optim.Adam,
"adamw": torch.optim.AdamW,
"rmsprop": torch.optim.RMSprop,
}[conf.train.optimizer]
params = [(n, p) for n, p in model.named_parameters() if p.requires_grad]
if conf.train.opt_regexp:
params = filter_parameters(params, conf.train.opt_regexp)
all_params = [p for n, p in params]
lr_params = pack_lr_parameters(params, conf.train.lr, conf.train.lr_scaling)
optimizer = optimizer_fn(
lr_params, lr=conf.train.lr, **conf.train.optimizer_options
)
scaler = GradScaler(enabled=args.mixed_precision is not None)
logger.info(f"Training with mixed_precision={args.mixed_precision}")
mp_dtype = {
"float16": torch.float16,
"bfloat16": torch.bfloat16,
None: torch.float32, # we disable it anyway
}[args.mixed_precision]
results = None # fix bug with it saving
lr_scheduler = get_lr_scheduler(optimizer=optimizer, conf=conf.train.lr_schedule)
if args.restore:
optimizer.load_state_dict(init_cp["optimizer"])
if "lr_scheduler" in init_cp:
lr_scheduler.load_state_dict(init_cp["lr_scheduler"])
if rank == 0:
logger.info(
"Starting training with configuration:\n%s", OmegaConf.to_yaml(conf)
)
losses_ = None
def trace_handler(p):
# torch.profiler.tensorboard_trace_handler(str(output_dir))
output = p.key_averages().table(sort_by="self_cuda_time_total", row_limit=10)
print(output)
p.export_chrome_trace("trace_" + str(p.step_num) + ".json")
p.export_stacks("/tmp/profiler_stacks.txt", "self_cuda_time_total")
if args.profile:
prof = torch.profiler.profile(
schedule=torch.profiler.schedule(wait=1, warmup=1, active=1, repeat=1),
on_trace_ready=torch.profiler.tensorboard_trace_handler(str(output_dir)),
record_shapes=True,
profile_memory=True,
with_stack=True,
)
prof.__enter__()
while epoch < conf.train.epochs and not stop:
if rank == 0:
logger.info(f"Starting epoch {epoch}")
# we first run the eval
if (
rank == 0
and epoch % conf.train.test_every_epoch == 0
and args.run_benchmarks
):
for bname, eval_conf in conf.get("benchmarks", {}).items():
logger.info(f"Running eval on {bname}")
s, f, r = run_benchmark(
bname,
eval_conf,
EVAL_PATH / bname / args.experiment / str(epoch),
model.eval(),
)
logger.info(str(s))
for metric_name, value in s.items():
writer.add_scalar(f"test/{bname}/{metric_name}", value, epoch)
for fig_name, fig in f.items():
writer.add_figure(f"figures/{bname}/{fig_name}", fig, epoch)
# set the seed
set_seed(conf.train.seed + epoch)
# update learning rate
if conf.train.lr_schedule.on_epoch and epoch > 0:
old_lr = optimizer.param_groups[0]["lr"]
lr_scheduler.step()
logger.info(
f'lr changed from {old_lr} to {optimizer.param_groups[0]["lr"]}'
)
if args.distributed:
train_loader.sampler.set_epoch(epoch)
if epoch > 0 and conf.train.dataset_callback_fn and not args.overfit:
loaders = [train_loader]
if conf.train.dataset_callback_on_val:
loaders += [val_loader]
for loader in loaders:
if isinstance(loader.dataset, torch.utils.data.Subset):
getattr(loader.dataset.dataset, conf.train.dataset_callback_fn)(
conf.train.seed + epoch
)
else:
getattr(loader.dataset, conf.train.dataset_callback_fn)(
conf.train.seed + epoch
)
for it, data in enumerate(train_loader):
tot_it = (len(train_loader) * epoch + it) * (
args.n_gpus if args.distributed else 1
)
tot_n_samples = tot_it
if not args.log_it:
# We normalize the x-axis of tensorflow to num samples!
tot_n_samples *= train_loader.batch_size
model.train()
optimizer.zero_grad()
with autocast(enabled=args.mixed_precision is not None, dtype=mp_dtype):
data = batch_to_device(data, device, non_blocking=True)
pred = model(data)
losses, _ = loss_fn(pred, data)
loss = torch.mean(losses["total"])
if torch.isnan(loss).any():
print(f"Detected NAN, skipping iteration {it}")
del pred, data, loss, losses
continue
do_backward = loss.requires_grad
if args.distributed:
do_backward = torch.tensor(do_backward).float().to(device)
torch.distributed.all_reduce(
do_backward, torch.distributed.ReduceOp.PRODUCT
)
do_backward = do_backward > 0
if do_backward:
scaler.scale(loss).backward()
if args.detect_anomaly:
# Check for params without any gradient which causes
# problems in distributed training with checkpointing
detected_anomaly = False
for name, param in model.named_parameters():
if param.grad is None and param.requires_grad:
print(f"param {name} has no gradient.")
detected_anomaly = True
if detected_anomaly:
raise RuntimeError("Detected anomaly in training.")
if conf.train.get("clip_grad", None):
scaler.unscale_(optimizer)
try:
torch.nn.utils.clip_grad_norm_(
all_params,
max_norm=conf.train.clip_grad,
error_if_nonfinite=True,
)
scaler.step(optimizer)
except RuntimeError:
logger.warning("NaN detected in gradients. Skipping iteration.")
scaler.update()
else:
scaler.step(optimizer)
scaler.update()
if not conf.train.lr_schedule.on_epoch:
lr_scheduler.step()
else:
if rank == 0:
logger.warning(f"Skip iteration {it} due to detach.")
if args.profile:
prof.step()
if it % conf.train.log_every_iter == 0:
for k in sorted(losses.keys()):
if args.distributed:
losses[k] = losses[k].sum(-1)
torch.distributed.reduce(losses[k], dst=0)
losses[k] /= train_loader.batch_size * args.n_gpus
losses[k] = torch.mean(losses[k], -1)
losses[k] = losses[k].item()
if rank == 0:
str_losses = [f"{k} {v:.3E}" for k, v in losses.items()]
logger.info(
"[E {} | it {}] loss {{{}}}".format(
epoch, it, ", ".join(str_losses)
)
)
for k, v in losses.items():
writer.add_scalar("training/" + k, v, tot_n_samples)
writer.add_scalar(
"training/lr", optimizer.param_groups[0]["lr"], tot_n_samples
)
writer.add_scalar("training/epoch", epoch, tot_n_samples)
if conf.train.log_grad_every_iter is not None:
if it % conf.train.log_grad_every_iter == 0:
grad_txt = ""
for name, param in model.named_parameters():
if param.grad is not None and param.requires_grad:
if name.endswith("bias"):
continue
writer.add_histogram(
f"grad/{name}", param.grad.detach(), tot_n_samples
)
norm = torch.norm(param.grad.detach(), 2)
grad_txt += f"{name} {norm.item():.3f} \n"
writer.add_text("grad/summary", grad_txt, tot_n_samples)
del pred, data, loss, losses
# Run validation
if (
(
it % conf.train.eval_every_iter == 0
and (it > 0 or epoch == -int(args.no_eval_0))
)
or stop
or it == (len(train_loader) - 1)
):
with fork_rng(seed=conf.train.seed):
results, pr_metrics, figures = do_evaluation(
model,
val_loader,
device,
loss_fn,
conf.train,
pbar=(rank == -1),
)
if rank == 0:
str_results = [
f"{k} {v:.3E}"
for k, v in results.items()
if isinstance(v, float)
]
logger.info(f'[Validation] {{{", ".join(str_results)}}}')
for k, v in results.items():
if isinstance(v, dict):
writer.add_scalars(f"figure/val/{k}", v, tot_n_samples)
else:
writer.add_scalar("val/" + k, v, tot_n_samples)
for k, v in pr_metrics.items():
writer.add_pr_curve("val/" + k, *v, tot_n_samples)
# @TODO: optional always save checkpoint
if results[conf.train.best_key] < best_eval:
best_eval = results[conf.train.best_key]
save_experiment(
model,
optimizer,
lr_scheduler,
conf,
losses_,
results,
best_eval,
epoch,
tot_it,
output_dir,
stop,
args.distributed,
cp_name="checkpoint_best.tar",
)
logger.info(f"New best val: {conf.train.best_key}={best_eval}")
if len(figures) > 0:
for i, figs in enumerate(figures):
for name, fig in figs.items():
writer.add_figure(
f"figures/{i}_{name}", fig, tot_n_samples
)
torch.cuda.empty_cache() # should be cleared at the first iter
if (tot_it % conf.train.save_every_iter == 0 and tot_it > 0) and rank == 0:
if results is None:
results, _, _ = do_evaluation(
model,
val_loader,
device,
loss_fn,
conf.train,
pbar=(rank == -1),
)
best_eval = results[conf.train.best_key]
best_eval = save_experiment(
model,
optimizer,
lr_scheduler,
conf,
losses_,
results,
best_eval,
epoch,
tot_it,
output_dir,
stop,
args.distributed,
)
if stop:
break
if rank == 0:
best_eval = save_experiment(
model,
optimizer,
lr_scheduler,
conf,
losses_,
results,
best_eval,
epoch,
tot_it,
output_dir=output_dir,
stop=stop,
distributed=args.distributed,
)
epoch += 1
logger.info(f"Finished training on process {rank}.")
if rank == 0:
writer.close()
def main_worker(rank, conf, output_dir, args):
if rank == 0:
with capture_outputs(output_dir / "log.txt"):
training(rank, conf, output_dir, args)
else:
training(rank, conf, output_dir, args)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("experiment", type=str)
parser.add_argument("--conf", type=str)
parser.add_argument(
"--mixed_precision",
"--mp",
default=None,
type=str,
choices=["float16", "bfloat16"],
)
parser.add_argument(
"--compile",
default=None,
type=str,
choices=["default", "reduce-overhead", "max-autotune"],
)
parser.add_argument("--overfit", action="store_true")
parser.add_argument("--restore", action="store_true")
parser.add_argument("--distributed", action="store_true")
parser.add_argument("--profile", action="store_true")
parser.add_argument("--print_arch", "--pa", action="store_true")
parser.add_argument("--detect_anomaly", "--da", action="store_true")
parser.add_argument("--log_it", "--log_it", action="store_true")
parser.add_argument("--no_eval_0", action="store_true")
parser.add_argument("--run_benchmarks", action="store_true")
parser.add_argument("dotlist", nargs="*")
args = parser.parse_intermixed_args()
logger.info(f"Starting experiment {args.experiment}")
output_dir = Path(TRAINING_PATH, args.experiment)
output_dir.mkdir(exist_ok=True, parents=True)
conf = OmegaConf.from_cli(args.dotlist)
if args.conf:
conf = OmegaConf.merge(OmegaConf.load(args.conf), conf)
elif args.restore:
restore_conf = OmegaConf.load(output_dir / "config.yaml")
conf = OmegaConf.merge(restore_conf, conf)
if not args.restore:
if conf.train.seed is None:
conf.train.seed = torch.initial_seed() & (2**32 - 1)
OmegaConf.save(conf, str(output_dir / "config.yaml"))
# copy gluefactory and submodule into output dir
for module in conf.train.get("submodules", []) + [__module_name__]:
mod_dir = Path(__import__(str(module)).__file__).parent
shutil.copytree(mod_dir, output_dir / module, dirs_exist_ok=True)
if args.distributed:
args.n_gpus = torch.cuda.device_count()
args.lock_file = output_dir / "distributed_lock"
if args.lock_file.exists():
args.lock_file.unlink()
torch.multiprocessing.spawn(
main_worker, nprocs=args.n_gpus, args=(conf, output_dir, args)
)
else:
main_worker(0, conf, output_dir, args)
|