Spaces:
Sleeping
Sleeping
File size: 9,020 Bytes
a316a54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import h5py
import numpy as np
from PIL import Image
import os
import torch
from torch.utils.data import Dataset
import time
from tqdm import tqdm
from lib.utils import preprocess_image
class MegaDepthDataset(Dataset):
def __init__(
self,
scene_list_path='megadepth_utils/train_scenes.txt',
scene_info_path='/local/dataset/megadepth/scene_info',
base_path='/local/dataset/megadepth',
train=True,
preprocessing=None,
min_overlap_ratio=.5,
max_overlap_ratio=1,
max_scale_ratio=np.inf,
pairs_per_scene=100,
image_size=256
):
self.scenes = []
with open(scene_list_path, 'r') as f:
lines = f.readlines()
for line in lines:
self.scenes.append(line.strip('\n'))
self.scene_info_path = scene_info_path
self.base_path = base_path
self.train = train
self.preprocessing = preprocessing
self.min_overlap_ratio = min_overlap_ratio
self.max_overlap_ratio = max_overlap_ratio
self.max_scale_ratio = max_scale_ratio
self.pairs_per_scene = pairs_per_scene
self.image_size = image_size
self.dataset = []
def build_dataset(self):
self.dataset = []
if not self.train:
np_random_state = np.random.get_state()
np.random.seed(42)
print('Building the validation dataset...')
else:
print('Building a new training dataset...')
for scene in tqdm(self.scenes, total=len(self.scenes)):
scene_info_path = os.path.join(
self.scene_info_path, '%s.npz' % scene
)
if not os.path.exists(scene_info_path):
continue
scene_info = np.load(scene_info_path, allow_pickle=True)
overlap_matrix = scene_info['overlap_matrix']
scale_ratio_matrix = scene_info['scale_ratio_matrix']
valid = np.logical_and(
np.logical_and(
overlap_matrix >= self.min_overlap_ratio,
overlap_matrix <= self.max_overlap_ratio
),
scale_ratio_matrix <= self.max_scale_ratio
)
pairs = np.vstack(np.where(valid))
try:
selected_ids = np.random.choice(
pairs.shape[1], self.pairs_per_scene
)
except:
continue
image_paths = scene_info['image_paths']
depth_paths = scene_info['depth_paths']
points3D_id_to_2D = scene_info['points3D_id_to_2D']
points3D_id_to_ndepth = scene_info['points3D_id_to_ndepth']
intrinsics = scene_info['intrinsics']
poses = scene_info['poses']
for pair_idx in selected_ids:
idx1 = pairs[0, pair_idx]
idx2 = pairs[1, pair_idx]
matches = np.array(list(
points3D_id_to_2D[idx1].keys() &
points3D_id_to_2D[idx2].keys()
))
# Scale filtering
matches_nd1 = np.array([points3D_id_to_ndepth[idx1][match] for match in matches])
matches_nd2 = np.array([points3D_id_to_ndepth[idx2][match] for match in matches])
scale_ratio = np.maximum(matches_nd1 / matches_nd2, matches_nd2 / matches_nd1)
matches = matches[np.where(scale_ratio <= self.max_scale_ratio)[0]]
point3D_id = np.random.choice(matches)
point2D1 = points3D_id_to_2D[idx1][point3D_id]
point2D2 = points3D_id_to_2D[idx2][point3D_id]
nd1 = points3D_id_to_ndepth[idx1][point3D_id]
nd2 = points3D_id_to_ndepth[idx2][point3D_id]
central_match = np.array([
point2D1[1], point2D1[0],
point2D2[1], point2D2[0]
])
self.dataset.append({
'image_path1': image_paths[idx1],
'depth_path1': depth_paths[idx1],
'intrinsics1': intrinsics[idx1],
'pose1': poses[idx1],
'image_path2': image_paths[idx2],
'depth_path2': depth_paths[idx2],
'intrinsics2': intrinsics[idx2],
'pose2': poses[idx2],
'central_match': central_match,
'scale_ratio': max(nd1 / nd2, nd2 / nd1)
})
np.random.shuffle(self.dataset)
if not self.train:
np.random.set_state(np_random_state)
def __len__(self):
return len(self.dataset)
def recover_pair(self, pair_metadata):
depth_path1 = os.path.join(
self.base_path, pair_metadata['depth_path1']
)
with h5py.File(depth_path1, 'r') as hdf5_file:
depth1 = np.array(hdf5_file['/depth'])
assert(np.min(depth1) >= 0)
image_path1 = os.path.join(
self.base_path, pair_metadata['image_path1']
)
image1 = Image.open(image_path1)
if image1.mode != 'RGB':
image1 = image1.convert('RGB')
image1 = np.array(image1)
assert(image1.shape[0] == depth1.shape[0] and image1.shape[1] == depth1.shape[1])
intrinsics1 = pair_metadata['intrinsics1']
pose1 = pair_metadata['pose1']
depth_path2 = os.path.join(
self.base_path, pair_metadata['depth_path2']
)
with h5py.File(depth_path2, 'r') as hdf5_file:
depth2 = np.array(hdf5_file['/depth'])
assert(np.min(depth2) >= 0)
image_path2 = os.path.join(
self.base_path, pair_metadata['image_path2']
)
image2 = Image.open(image_path2)
if image2.mode != 'RGB':
image2 = image2.convert('RGB')
image2 = np.array(image2)
assert(image2.shape[0] == depth2.shape[0] and image2.shape[1] == depth2.shape[1])
intrinsics2 = pair_metadata['intrinsics2']
pose2 = pair_metadata['pose2']
central_match = pair_metadata['central_match']
image1, bbox1, image2, bbox2 = self.crop(image1, image2, central_match)
depth1 = depth1[
bbox1[0] : bbox1[0] + self.image_size,
bbox1[1] : bbox1[1] + self.image_size
]
depth2 = depth2[
bbox2[0] : bbox2[0] + self.image_size,
bbox2[1] : bbox2[1] + self.image_size
]
return (
image1, depth1, intrinsics1, pose1, bbox1,
image2, depth2, intrinsics2, pose2, bbox2
)
def crop(self, image1, image2, central_match):
bbox1_i = max(int(central_match[0]) - self.image_size // 2, 0)
if bbox1_i + self.image_size >= image1.shape[0]:
bbox1_i = image1.shape[0] - self.image_size
bbox1_j = max(int(central_match[1]) - self.image_size // 2, 0)
if bbox1_j + self.image_size >= image1.shape[1]:
bbox1_j = image1.shape[1] - self.image_size
bbox2_i = max(int(central_match[2]) - self.image_size // 2, 0)
if bbox2_i + self.image_size >= image2.shape[0]:
bbox2_i = image2.shape[0] - self.image_size
bbox2_j = max(int(central_match[3]) - self.image_size // 2, 0)
if bbox2_j + self.image_size >= image2.shape[1]:
bbox2_j = image2.shape[1] - self.image_size
return (
image1[
bbox1_i : bbox1_i + self.image_size,
bbox1_j : bbox1_j + self.image_size
],
np.array([bbox1_i, bbox1_j]),
image2[
bbox2_i : bbox2_i + self.image_size,
bbox2_j : bbox2_j + self.image_size
],
np.array([bbox2_i, bbox2_j])
)
def __getitem__(self, idx):
(
image1, depth1, intrinsics1, pose1, bbox1,
image2, depth2, intrinsics2, pose2, bbox2
) = self.recover_pair(self.dataset[idx])
image1 = preprocess_image(image1, preprocessing=self.preprocessing)
image2 = preprocess_image(image2, preprocessing=self.preprocessing)
return {
'image1': torch.from_numpy(image1.astype(np.float32)),
'depth1': torch.from_numpy(depth1.astype(np.float32)),
'intrinsics1': torch.from_numpy(intrinsics1.astype(np.float32)),
'pose1': torch.from_numpy(pose1.astype(np.float32)),
'bbox1': torch.from_numpy(bbox1.astype(np.float32)),
'image2': torch.from_numpy(image2.astype(np.float32)),
'depth2': torch.from_numpy(depth2.astype(np.float32)),
'intrinsics2': torch.from_numpy(intrinsics2.astype(np.float32)),
'pose2': torch.from_numpy(pose2.astype(np.float32)),
'bbox2': torch.from_numpy(bbox2.astype(np.float32))
}
|