Spaces:
				
			
			
	
			
			
		Runtime error
		
	
	
	
			
			
	
	
	
	
		
		
		Runtime error
		
	File size: 5,060 Bytes
			
			a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070 a80d6bb c74a070  | 
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153  | 
								import os
import torch
import torch.optim as optim
from tqdm import tqdm
from torch.autograd import Variable
from network_v0.model import PointModel
from loss_function import KeypointLoss
class Trainer(object):
    def __init__(self, config, train_loader=None):
        self.config = config
        # data parameters
        self.train_loader = train_loader
        self.num_train = len(self.train_loader)
        # training parameters
        self.max_epoch = config.max_epoch
        self.start_epoch = config.start_epoch
        self.momentum = config.momentum
        self.lr = config.init_lr
        self.lr_factor = config.lr_factor
        self.display = config.display
        # misc params
        self.use_gpu = config.use_gpu
        self.random_seed = config.seed
        self.gpu = config.gpu
        self.ckpt_dir = config.ckpt_dir
        self.ckpt_name = "{}-{}".format(config.ckpt_name, config.seed)
        # build model
        self.model = PointModel(is_test=False)
        # training on GPU
        if self.use_gpu:
            torch.cuda.set_device(self.gpu)
            self.model.cuda()
        print(
            "Number of model parameters: {:,}".format(
                sum([p.data.nelement() for p in self.model.parameters()])
            )
        )
        # build loss functional
        self.loss_func = KeypointLoss(config)
        # build optimizer and scheduler
        self.optimizer = optim.Adam(self.model.parameters(), lr=self.lr)
        self.lr_scheduler = optim.lr_scheduler.MultiStepLR(
            self.optimizer, milestones=[4, 8], gamma=self.lr_factor
        )
        # resume
        if int(self.config.start_epoch) > 0:
            (
                self.config.start_epoch,
                self.model,
                self.optimizer,
                self.lr_scheduler,
            ) = self.load_checkpoint(
                int(self.config.start_epoch),
                self.model,
                self.optimizer,
                self.lr_scheduler,
            )
    def train(self):
        print("\nTrain on {} samples".format(self.num_train))
        self.save_checkpoint(0, self.model, self.optimizer, self.lr_scheduler)
        for epoch in range(self.start_epoch, self.max_epoch):
            print(
                "\nEpoch: {}/{} --lr: {:.6f}".format(epoch + 1, self.max_epoch, self.lr)
            )
            # train for one epoch
            self.train_one_epoch(epoch)
            if self.lr_scheduler:
                self.lr_scheduler.step()
            self.save_checkpoint(
                epoch + 1, self.model, self.optimizer, self.lr_scheduler
            )
    def train_one_epoch(self, epoch):
        self.model.train()
        for (i, data) in enumerate(tqdm(self.train_loader)):
            if self.use_gpu:
                source_img = data["image_aug"].cuda()
                target_img = data["image"].cuda()
                homography = data["homography"].cuda()
            source_img = Variable(source_img)
            target_img = Variable(target_img)
            homography = Variable(homography)
            # forward propogation
            output = self.model(source_img, target_img, homography)
            # compute loss
            loss, loc_loss, desc_loss, score_loss, corres_loss = self.loss_func(output)
            # compute gradients and update
            self.optimizer.zero_grad()
            loss.backward()
            self.optimizer.step()
            # print training info
            msg_batch = (
                "Epoch:{} Iter:{} lr:{:.4f} "
                "loc_loss={:.4f} desc_loss={:.4f} score_loss={:.4f} corres_loss={:.4f} "
                "loss={:.4f} ".format(
                    (epoch + 1),
                    i,
                    self.lr,
                    loc_loss.data,
                    desc_loss.data,
                    score_loss.data,
                    corres_loss.data,
                    loss.data,
                )
            )
            if (i % self.display) == 0:
                print(msg_batch)
        return
    def save_checkpoint(self, epoch, model, optimizer, lr_scheduler):
        filename = self.ckpt_name + "_" + str(epoch) + ".pth"
        torch.save(
            {
                "epoch": epoch,
                "model_state": model.state_dict(),
                "optimizer_state": optimizer.state_dict(),
                "lr_scheduler": lr_scheduler.state_dict(),
            },
            os.path.join(self.ckpt_dir, filename),
        )
    def load_checkpoint(self, epoch, model, optimizer, lr_scheduler):
        filename = self.ckpt_name + "_" + str(epoch) + ".pth"
        ckpt = torch.load(os.path.join(self.ckpt_dir, filename))
        epoch = ckpt["epoch"]
        model.load_state_dict(ckpt["model_state"])
        optimizer.load_state_dict(ckpt["optimizer_state"])
        lr_scheduler.load_state_dict(ckpt["lr_scheduler"])
        print("[*] Loaded {} checkpoint @ epoch {}".format(filename, ckpt["epoch"]))
        return epoch, model, optimizer, lr_scheduler
 |