Spaces:
Runtime error
Runtime error
File size: 19,281 Bytes
33ab722 ac7da1b 6506345 33ab722 41041aa 33ab722 f9e3d75 01e250d f9e3d75 33ab722 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 |
from gradio_client import Client
#client = Client("https://svjack-entity-property-extractor-zh.hf.space/--replicas/boyb8/")
client = Client("https://svjack-entity-property-extractor-zh.hf.space")
import pandas as pd
import numpy as np
import os
import re
from langchain.vectorstores import FAISS
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
from langchain import chains
from rapidfuzz import fuzz
import pandas as pd
import chatglm_cpp
from pathlib import Path
import pandas as pd
from huggingface_hub import snapshot_download
if not os.path.exists("genshin_book_chunks_with_qa_sp"):
path = snapshot_download(
repo_id="svjack/genshin_book_chunks_with_qa_sp",
repo_type="dataset",
local_dir="genshin_book_chunks_with_qa_sp",
local_dir_use_symlinks = False
)
if not os.path.exists("bge_small_book_chunks_prebuld"):
path = snapshot_download(
repo_id="svjack/bge_small_book_chunks_prebuld",
repo_type="dataset",
local_dir="bge_small_book_chunks_prebuld",
local_dir_use_symlinks = False
)
if not os.path.exists("chatglm3-6b-bin"):
path = snapshot_download(
repo_id="svjack/chatglm3-6b-bin",
repo_type="model",
local_dir="chatglm3-6b-bin",
local_dir_use_symlinks = False
)
#model_file_path = "chatglm3-6b-int4.bin"
model_file_path = "chatglm3-6b-bin/chatglm3-6b-int4.bin"
print("load {}".format(model_file_path))
chatglm_llm = chatglm_cpp.Pipeline(Path(model_file_path))
def chat_messages(message, history, chatglm_llm = chatglm_llm,
max_length = 128, show_process = False
):
flatten_history = []
for a, b in history:
flatten_history.append(
chatglm_cpp.ChatMessage(role="user", content=a)
)
flatten_history.append(
chatglm_cpp.ChatMessage(role="assistant", content=b)
)
streamer = chatglm_llm.chat(
flatten_history + [
chatglm_cpp.ChatMessage(role="user", content=message)
], do_sample=False,
stream = True,
max_length = 5120
)
response = ""
for new_text in streamer:
response += new_text.content
if show_process:
print(response)
#from IPython.display import clear_output
#clear_output(wait=True)
yield response
if len(response) >= max_length:
break
#return response
'''
query = "警察是如何破获邪恶计划的?" ## 警 执律 盗
k = 10
uniform_recall_docs_to_pairwise_cos(
query,
docsearch_bge_loaded.similarity_search_with_score(query, k = k, ),
bge_book_embeddings
)
'''
def uniform_recall_docs_to_pairwise_cos(query ,doc_list, embeddings):
assert type(doc_list) == type([])
from langchain.evaluation import load_evaluator
from langchain.evaluation import EmbeddingDistance
hf_evaluator = load_evaluator("pairwise_embedding_distance", embeddings=embeddings,
distance_metric = EmbeddingDistance.COSINE)
return sorted(pd.Series(doc_list).map(lambda x: x[0].page_content).map(lambda x:
(x ,hf_evaluator.evaluate_string_pairs(prediction=query, prediction_b=x)["score"])
).values.tolist(), key = lambda t2: t2[1])
'''
sort_by_kw("深渊使徒", book_df)["content_chunks_formatted"].head(5).values.tolist() ### 深渊
'''
def sort_by_kw(kw, book_df):
req = book_df.copy()
req["sim_score"] = req.apply(
lambda x:
max(map(lambda y: fuzz.ratio(y, kw) ,eval(x["person"]) + eval(x["locate"]) + eval(x["locate"]))) if \
eval(x["person"]) + eval(x["locate"]) + eval(x["locate"]) else 0
, axis = 1
)
req = req.sort_values(by = "sim_score", ascending = False)
return req
def recall_chuncks(query, docsearch, embedding, book_df,
sparse_threshold = 30,
dense_top_k = 10,
rerank_by = "emb",
):
sparse_output = sort_by_kw(query, book_df)[["content_chunks_formatted", "sim_score"]]
sparse_output_list = sparse_output[
sparse_output["sim_score"] >= sparse_threshold
]["content_chunks_formatted"].values.tolist()
dense_output = uniform_recall_docs_to_pairwise_cos(
query,
docsearch.similarity_search_with_score(query, k = dense_top_k,),
embedding
)
for chunck, score in dense_output:
if chunck not in sparse_output_list:
sparse_output_list.append(chunck)
if rerank_by == "emb":
from langchain.evaluation import load_evaluator
from langchain.evaluation import EmbeddingDistance
hf_evaluator = load_evaluator("pairwise_embedding_distance", embeddings=embedding,
distance_metric = EmbeddingDistance.COSINE)
return pd.Series(sorted(pd.Series(sparse_output_list).map(lambda x:
(x ,hf_evaluator.evaluate_string_pairs(prediction=query, prediction_b=x)["score"])
).values.tolist(), key = lambda t2: t2[1])).map(lambda x: x[0]).values.tolist()
else:
sparse_output_list = sorted(sparse_output_list, key = lambda x: fuzz.ratio(x, query), reverse = True)
return sparse_output_list
def reduce_list_by_order(text_list, as_text = False):
if not text_list:
return
df = pd.DataFrame(
list(map(lambda x: (x.split("\n")[0], x.split("\n")[1], "\n".join(x.split("\n")[2:])), text_list))
).groupby([0, 1])[2].apply(list).map(lambda x: sorted(x, key = len, reverse=True)).map(
"\n\n".join
).reset_index()
d = dict(df.apply(lambda x: ((x.iloc[0], x.iloc[1]), x.iloc[2]), axis = 1).values.tolist())
#return df
order_list = []
for x in text_list:
a, b = x.split("\n")[0], x.split("\n")[1]
if not order_list:
order_list = [[a, [b]]]
elif a in list(map(lambda t2: t2[0], order_list)):
order_list[list(map(lambda t2: t2[0], order_list)).index(a)][1].append(b)
elif a not in list(map(lambda t2: t2[0], order_list)):
order_list.append([a, [b]])
df = pd.DataFrame(pd.DataFrame(order_list).explode(1).dropna().apply(
lambda x: (x.iloc[0], x.iloc[1], d[(x.iloc[0], x.iloc[1])]), axis = 1
).values.tolist()).drop_duplicates()
if as_text:
return "\n\n".join(
df.apply(lambda x: "{}\n{}\n{}".format(x.iloc[0], x.iloc[1], x.iloc[2]), axis = 1).values.tolist()
)
return df
def build_gpt_prompt(query, docsearch, embedding, book_df, max_context_length = 4090):
l = recall_chuncks(query, docsearch, embedding, book_df)
context = reduce_list_by_order(l, as_text = True)
context_l = []
for ele in context.split("\n"):
if sum(map(len, context_l)) >= max_context_length:
break
context_l.append(ele)
context = "\n".join(context_l).strip()
template = """使用以下上下文来回答最后的问题。如果你不知道答案,就说你不知道,不要试图编造答案。尽量使答案简明扼要。总是在回答的最后说“谢谢你的提问!”。
{context}
问题: {question}
有用的回答:"""
return template.format(
**{
"context": context,
"question": query
}
)
def collect_prompt_to_hist_list(prompt, add_assistant = False):
l = pd.Series(prompt.split("\n\n")).map(lambda x: x.strip()).values.tolist()
ll = []
for ele in l:
if not ll:
ll.append(ele)
else:
if ele.startswith("文章标题:") or ele.startswith("问题:"):
ll.append(ele)
else:
ll[-1] += ("\n\n" + ele)
if add_assistant:
ll_ = []
for i in range(len(ll)):
if i == 0:
ll_.append((ll[i], "好的。"))
elif i < len(ll) - 1:
ll_.append((ll[i], "我读懂了。"))
else:
ll_.append((ll[i], ""))
return ll_
else:
return ll
def row_to_content_ask(r):
question = r["question"]
content_list = r["content_list"]
assert type(content_list) == type([])
content_prompt_list = pd.Series(content_list).map(
lambda x: '''
{}\n从上面的相关的叙述中抽取包含"{}"中词汇的相关语段。
'''.format(x, question).strip()
).values.tolist()
return content_prompt_list
def entity_extractor_by_glm(query,
show_process = False, max_length = 512,
return_out_text = False,
):
import re
hist = [
['请从下面的句子中提取实体和属性。不需要进行进一步解释。', '好的。'],
['问题:宁波在哪个省份?', '实体:宁波 属性:省份'],
['问题:中国的货币是什么?', '实体:中国 属性:货币'],
['问题:百慕大三角在什么地方?', '实体:百慕大三角 属性:地方'],
['问题:谁是最可爱的人?', "实体:人 属性:可爱"],
['问题:黄河的拐点在哪里?', "实体:黄河 属性:拐点"],
#['问题:魔神归终在哪里?', '实体:归终 属性:哪里'],
#["玉米的引进时间是什么时候?", ""]
]
out_text = chat_messages("问题:{}".format(query),
hist,
)
req = ""
for ele in out_text:
req = ele
out_text = req
if return_out_text:
return out_text
e_list = re.findall(r"实体(.*?)属性", out_text.replace("\n", " "))
if e_list:
return re.findall(u"[\u4e00-\u9fa5]+" ,e_list[0])
return None
def unzip_string(x, size = 2):
if len(x) <= size:
return [x]
req = []
for i in range(len(x) - size + 1):
req.append(x[i: i + size])
return req
def entity_extractor_by_adapter(x):
import json
result = client.predict(
x, # str in 'question' Textbox component
api_name="/predict"
)
with open(result, "r") as f:
req = json.load(f)
req_list = req.get("E-TAG", [])
req_ = []
for ele in req_list:
for x in unzip_string(ele, 2):
if x not in req_:
req_.append(x)
return req_
##### maybe 0.1
def query_content_ask_func(question, content_list,
setfit_model, show_process = False, max_length = 1024):
ask_list = row_to_content_ask(
{
"question": question,
"content_list": content_list
}
)
#return ask_list
req = []
for prompt in ask_list:
out_text = chat_messages(prompt + "如果没有提到相关内容,请回答不知道。使用中文进行回答,不要包含任何英文。",
[], show_process = show_process, max_length = max_length
)
req_ = ""
for ele in out_text:
req_ = ele
out_text = req_
req.append(out_text)
d = {
"question": question,
"content_list": content_list
}
assert len(req) == len(ask_list)
d["question_content_relate_list"] = req
d["relate_prob_list"] = setfit_model.predict_proba(
req
).numpy()[:, 1].tolist()
return d
def build_relate_ask_list(query, docsearch_bge_loaded, bge_book_embeddings, book_df,
setfit_model, as_content_score_df = True,
show_process = False, add_relate_entities = False,
max_length = 1024):
prompt = build_gpt_prompt(query, docsearch_bge_loaded, bge_book_embeddings, book_df)
prompt_list = collect_prompt_to_hist_list(prompt)
#print(prompt_list)
question = prompt_list[-1].split("\n")[0]
content_list = prompt_list[1:-1]
d = query_content_ask_func(question, content_list,
setfit_model, show_process = show_process)
#entity_list = entity_extractor_by_glm(query,
#show_process = show_process, max_length = max_length)
entity_list = entity_extractor_by_adapter(query)
if type(entity_list) != type([]):
entity_list = []
d["in_content_entity_list"] = list(map(lambda x:
list(filter(lambda e: e in x, entity_list))
, d["content_list"]))
if add_relate_entities:
relate_content_entity_list = [[]] * len(content_list)
for entity in entity_list:
entity_content_score_d = query_content_ask_func(entity, d["content_list"],
setfit_model, show_process = show_process)
lookup_df = pd.DataFrame(
list(zip(*[entity_content_score_d["content_list"],
entity_content_score_d["relate_prob_list"]]))
)
for ii, (i, r) in enumerate(lookup_df.iterrows()):
if r.iloc[1] >= 0.5 and entity not in relate_content_entity_list[ii]:
#relate_content_entity_list[ii].append(entity)
relate_content_entity_list[ii] = relate_content_entity_list[ii] + [entity]
d["relate_content_entity_list"] = relate_content_entity_list
if as_content_score_df:
if add_relate_entities:
df = pd.concat(
[
pd.Series(d["content_list"]).map(lambda x: x.strip()),
pd.Series(d["in_content_entity_list"]),
pd.Series(d["relate_content_entity_list"]),
pd.Series(d["question_content_relate_list"]).map(lambda x: x.strip()),
pd.Series(d["relate_prob_list"])
], axis = 1
)
df.columns = ["content", "entities", "relate_entities", "relate_eval_str", "score"]
else:
df = pd.concat(
[
pd.Series(d["content_list"]).map(lambda x: x.strip()),
pd.Series(d["in_content_entity_list"]),
#pd.Series(d["relate_content_entity_list"]),
pd.Series(d["question_content_relate_list"]).map(lambda x: x.strip()),
pd.Series(d["relate_prob_list"])
], axis = 1
)
df.columns = ["content", "entities", "relate_eval_str", "score"]
req = []
entities_num_list = df["entities"].map(len).drop_duplicates().dropna().sort_values(ascending = False).\
values.tolist()
for e_num in entities_num_list:
req.append(
df[
df["entities"].map(lambda x: len(x) == e_num)
].sort_values(by = "score", ascending = False)
)
return pd.concat(req, axis = 0)
#df = df.sort_values(by = "score", ascending = False)
#return df
return d
def run_all(query, docsearch_bge_loaded, bge_book_embeddings, book_df,
setfit_model, only_return_prompt = False):
df = build_relate_ask_list(query, docsearch_bge_loaded, bge_book_embeddings, book_df,
setfit_model, show_process=False)
info_list = df[
df.apply(
lambda x: x["score"] >= 0.1 and bool(x["entities"]), axis = 1
)
].values.tolist()
if not info_list:
return df, info_list, "没有相关内容,谢谢你的提问。"
prompt = '''
问题: {}
根据下面的内容回答上面的问题,如果无法根据内容确定答案,请回答不知道。
{}
'''.format(query, "\n\n".join(pd.Series(info_list).map(lambda x: x[0]).values.tolist()))
if only_return_prompt:
return df, info_list, prompt
q_head = "\n".join(prompt.split("\n")[:2])
c_tail = "\n".join(prompt.split("\n")[2:])[:4000]
out_text = chat_messages(
c_tail + "\n" + q_head.replace("下面的内容回答上面的问题", "上面的内容回答问题") + "用中文回答问题。",
[], show_process = False, max_length = 512
)
req_ = ""
for ele in out_text:
req_ = ele
out_text = req_.strip()
return df, info_list, out_text
import gradio as gr
#book_df = pd.read_csv("genshin_book_chunks_with_qa_sp.csv")
book_df = pd.read_csv("genshin_book_chunks_with_qa_sp/genshin_book_chunks_with_qa_sp.csv")
book_df["content_chunks"].dropna().drop_duplicates().shape
book_df["content_chunks_formatted"] = book_df.apply(
lambda x: "文章标题:{}\n子标题:{}\n内容:{}".format(x["title"], x["sub_title"], x["content_chunks"]),
axis = 1
)
texts = book_df["content_chunks_formatted"].dropna().drop_duplicates().values.tolist()
#embedding_path = "bge-small-book-qa/"
embedding_path = "svjack/bge-small-book-qa"
bge_book_embeddings = HuggingFaceEmbeddings(model_name=embedding_path)
docsearch_bge_loaded = FAISS.load_local("bge_small_book_chunks_prebuld/", bge_book_embeddings,
allow_dangerous_deserialization = True
)
from setfit import SetFitModel
setfit_model = SetFitModel.from_pretrained("svjack/setfit_info_cls")
with gr.Blocks() as demo:
title = gr.HTML(
"""<h1 align="center"> <font size="+3"> Genshin Impact Book QA ChatGLM3 Demo 🏃 </font> </h1>""",
elem_id="title",
)
with gr.Column():
with gr.Row():
query = gr.Text(label = "输入问题:", lines = 1, interactive = True, scale = 5.0)
run_button = gr.Button("得到答案")
output = gr.Text(label = "回答:", lines = 5, interactive = True)
recall_items = gr.JSON(label = "召回相关内容", interactive = False)
with gr.Row():
gr.Examples(
[
'丘丘人有哪些生活习惯?',
#'岩王帝君和归终是什么关系?',
'盐之魔神的下场是什么样的?',
#'归终是谁?',
'岩王帝君是一个什么样的人?',
#'铳枪手的故事内容是什么样的?',
'白夜国的子民遭遇了什么?',
'大蛇居住在哪里?',
'珊瑚宫有哪些传说?',
'灵光颂的内容是什么样的?',
'连心珠讲了一件什么事情?',
#'梓心是谁?',
#'枫丹有哪些故事?',
'璃月有哪些故事?',
#'轻策庄有哪些故事?',
'瑶光滩有哪些故事?',
'稻妻有哪些故事?',
'海祇岛有哪些故事?',
'须弥有哪些故事?',
'蒙德有哪些故事?',
'璃月有哪些奇珍异宝?',
#'狸猫和天狗是什么关系?',
],
inputs = query,
label = "被书目内容包含的问题"
)
with gr.Row():
gr.Examples(
[
'爱丽丝女士是可莉的妈妈吗?',
'摘星崖是什么样的?',
'丘丘人使用的是什么文字?',
'深渊使徒哪里来的?',
'发条机关可以用来做什么?',
'那先朱那做了什么?',
],
inputs = query,
label = "没有被书目明确提到的问题"
)
run_button.click(lambda x:
run_all(x, docsearch_bge_loaded, bge_book_embeddings, book_df,
setfit_model = setfit_model)[1:],
query, [recall_items, output]
)
demo.queue(max_size=4, concurrency_count=1).launch(debug=True, show_api=False, share = True) |