Spaces:
Runtime error
Runtime error
File size: 55,023 Bytes
b5dbcf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 |
#!/usr/bin/env python
# coding: utf-8
#### env base_cp
#main_path = "/Users/svjack/temp/gradio_prj/tableQA-Chinese-main"
#main_path = "/User/tableQA-Chinese-main"
#main_path = "/temp/tableQA-Chinese-main"
main_path = "."
import pandas as pd
import numpy as np
import os
import ast
import re
import json
from icecream import ic
from copy import deepcopy
from itertools import product, combinations
import pandas as pd
import os
import sys
from pyarrow.filesystem import LocalFileSystem
from functools import reduce
import nltk
from nltk import pos_tag, word_tokenize
from collections import namedtuple
from ast import literal_eval
from torch.nn import functional
import numpy as np
import torch
from torch import nn
from torch.nn import init
from torch.nn.utils import rnn as rnn_utils
import math
from icecream import ic
import seaborn as sns
import matplotlib.pyplot as plt
import shutil
#from keybert import KeyBERT
#from bertopic import BERTopic
import sqlite3
import sqlite_utils
from icecream import ic
import jieba
import pandas as pd
import urllib.request
from urllib.parse import quote
from time import sleep
import json
import os
from collections import defaultdict
import re
from functools import reduce, partial
#### used in this condition extract in training.
op_sql_dict = {0:">", 1:"<", 2:"==", 3:"!="}
#### used by clf for intension inference
agg_sql_dict = {0:"", 1:"AVG", 2:"MAX", 3:"MIN", 4:"COUNT", 5:"SUM"}
#### final to combine them (one for 0, and multi for 1 2)
conn_sql_dict = {0:"", 1:"and", 2:"or"}
#### kws and time pattern defination
and_kws = ("且", "而且", "并且", "和", "当中", "同时")
or_kws = ("或", "或者",)
conn_kws = and_kws + or_kws
pattern_list = [u"[年月\.\-\d]+", u"[年月\d]+", u"[年个月\d]+", u"[年月日\d]+"]
time_kws = ("什么时候", "时间", "时候")
sum_count_high_kws = ('多少个', '有几个', '总共') + ('总和','一共',) + ("总数",)
mean_kws = ('平均数', '均值', '平均值', '平均')
max_kws = ('最大', '最多', '最大值', '最高')
min_kws = ('最少', '最小值', '最小', '最低')
sum_count_low_kws = ('个', '总共') + ('总和','加','总','一共','和',) + ("哪些", "查", "数量", "数") + ("几",) + ('多少', "多大") + ("总数",)
max_special_kws = ("以上", "大于")
min_special_kws = ("以下", "小于")
qst_kws = ("多少", "什么", "多大", "哪些", "怎么", "情况", "那些", "哪个")
only_kws_columns = {"城市": "=="}
##### jointbert predict model init start
#jointbert_path = "../../featurize/JointBERT"
#jointbert_path = "/Users/svjack/temp/gradio_prj/tableQA-Chinese-main/JointBERT-master"
jointbert_path = os.path.join(main_path, "JointBERT-master")
sys.path.append(jointbert_path)
from model.modeling_jointbert import JointBERT
from model.modeling_jointbert import *
from trainer import *
from main import *
from data_loader import *
pred_parser = argparse.ArgumentParser()
pred_parser.add_argument("--input_file", default="conds_pred/seq.in", type=str, help="Input file for prediction")
pred_parser.add_argument("--output_file", default="conds_pred/sample_pred_out.txt", type=str, help="Output file for prediction")
#pred_parser.add_argument("--model_dir", default="bert", type=str, help="Path to save, load model")
pred_parser.add_argument("--model_dir", default= os.path.join(main_path ,"data/bert"), type=str, help="Path to save, load model")
#pred_parser.add_argument("--model_dir", default= os.path.join(main_path ,"JBert_Zh_Condition_Extractor"), type=str, help="Path to save, load model")
pred_parser.add_argument("--batch_size", default=32, type=int, help="Batch size for prediction")
pred_parser.add_argument("--no_cuda", action="store_true", help="Avoid using CUDA when available")
pred_parser_config_dict = dict(map(lambda item:(item.option_strings[0].replace("--", ""), item.default) ,pred_parser.__dict__["_actions"]))
pred_parser_config_dict = dict(filter(lambda t2: t2[0] != "-h", pred_parser_config_dict.items()))
pred_parser_namedtuple = namedtuple("pred_parser_config", pred_parser_config_dict.keys())
for k, v in pred_parser_config_dict.items():
if type(v) == type(""):
exec("pred_parser_namedtuple.{}='{}'".format(k, v))
else:
exec("pred_parser_namedtuple.{}={}".format(k, v))
from predict import *
pred_config = pred_parser_namedtuple
args = get_args(pred_config)
device = get_device(pred_config)
args_parser_namedtuple = namedtuple("args_config", args.keys())
for k, v in args.items():
if type(v) == type(""):
exec("args_parser_namedtuple.{}='{}'".format(k, v))
else:
exec("args_parser_namedtuple.{}={}".format(k, v))
args = args_parser_namedtuple
#args.data_dir = "/Users/svjack/temp/gradio_prj/tableQA-Chinese-main/data"
args.data_dir = os.path.join(main_path, "data")
'''
pred_model = MODEL_CLASSES["bert"][1].from_pretrained(args.model_dir,
args=args,
intent_label_lst=get_intent_labels(args),
slot_label_lst=get_slot_labels(args))
'''
pred_model = MODEL_CLASSES["bert"][1].from_pretrained(
os.path.join(main_path, "data/bert")
,
args=args,
intent_label_lst=get_intent_labels(args),
slot_label_lst=get_slot_labels(args))
pred_model.to(device)
pred_model.eval()
intent_label_lst = get_intent_labels(args)
slot_label_lst = get_slot_labels(args)
pad_token_label_id = args.ignore_index
tokenizer = load_tokenizer(args)
## jointbert predict model init end
###### one sent conds decomp start
def predict_single_sent(question):
text = " ".join(list(question))
batch = convert_input_file_to_tensor_dataset([text.split(" ")], pred_config, args, tokenizer, pad_token_label_id).tensors
batch = tuple(t.to(device) for t in batch)
inputs = {"input_ids": batch[0],
"attention_mask": batch[1],
"intent_label_ids": None,
"slot_labels_ids": None}
inputs["token_type_ids"] = batch[2]
outputs = pred_model(**inputs)
_, (intent_logits, slot_logits) = outputs[:2]
intent_preds = intent_logits.detach().cpu().numpy()
slot_preds = slot_logits.detach().cpu().numpy()
intent_preds = np.argmax(intent_preds, axis=1)
slot_preds = np.argmax(slot_preds, axis=2)
all_slot_label_mask = batch[3].detach().cpu().numpy()
slot_label_map = {i: label for i, label in enumerate(slot_label_lst)}
slot_preds_list = [[] for _ in range(slot_preds.shape[0])]
for i in range(slot_preds.shape[0]):
for j in range(slot_preds.shape[1]):
if all_slot_label_mask[i, j] != pad_token_label_id:
slot_preds_list[i].append(slot_label_map[slot_preds[i][j]])
pred_l = []
for words, slot_preds, intent_pred in zip([text.split(" ")], slot_preds_list, intent_preds):
line = ""
for word, pred in zip(words, slot_preds):
if pred == 'O':
line = line + word + " "
else:
line = line + "[{}:{}] ".format(word, pred)
pred_l.append((line, intent_label_lst[intent_pred]))
return pred_l[0]
###@@ conn_kws = ["且", "或", "或者", "和"]
'''
and_kws = ("且", "而且", "并且", "和", "当中", "同时")
or_kws = ("或", "或者",)
conn_kws = and_kws + or_kws
'''
#conn_kws = ("且", "或", "或者", "和") + ("而且", "并且", "当中")
#### some algorithm use in it.
def recurrent_extract(question):
def filter_relation(text):
#kws = ["且", "或", "或者", "和"]
kws = conn_kws
req = text
for kw in sorted(kws, key= lambda x: len(x))[::-1]:
req = req.replace(kw, "")
return req
def produce_plain_text(text):
##### replace tag string from text
kws = ["[", "]", " ", ":B-HEADER", ":I-HEADER", ":B-VALUE", ":I-VALUE"]
plain_text = text
for kw in kws:
plain_text = plain_text.replace(kw, "")
return plain_text
def find_min_commmon_strings(c):
##### {"jack", "ja", "ss", "sss", "ps", ""} -> {"ja", "ss", "ps"}
common_strings = list(filter(lambda x: type(x) == type("") ,
map(lambda t2: t2[0]
if t2[0] in t2[1]
else (t2[1]
if t2[1] in t2[0]
else (t2[0], t2[1])),combinations(c, 2))))
req = set([])
while c:
ele = c.pop()
if all(map(lambda cc: cc not in ele, common_strings)):
req.add(ele)
req = req.union(set(common_strings))
return set(filter(lambda x: x, req))
def extract_scope(scope_text):
def find_max_in(plain_text ,b_chars, i_chars):
chars = "".join(b_chars + i_chars)
while chars and chars not in plain_text:
chars = chars[:-1]
return chars
b_header_chars = re.findall(r"([\w\W]):B-HEADER", scope_text)
i_header_chars = re.findall(r"([\w\W]):I-HEADER", scope_text)
b_value_chars = re.findall(r"([\w\W]):B-VALUE", scope_text)
i_value_chars = re.findall(r"([\w\W]):I-VALUE", scope_text)
if len(b_header_chars) != 1 or len(b_value_chars) != 1:
return None
plain_text = produce_plain_text(scope_text)
header = find_max_in(plain_text, b_header_chars, i_header_chars)
value = find_max_in(plain_text, b_value_chars, i_value_chars)
if (not header) or (not value):
return None
return (header, value)
def find_scope(text):
start_index = text.find("[")
end_index = text.rfind("]")
if start_index == -1 or end_index == -1:
return text
scope_text = text[start_index: end_index + 1]
res_text = filter_relation(text.replace(scope_text, "")).replace(" ", "").strip()
return (scope_text, res_text)
def produce_all_attribute_remove(req):
if not req:
return None
string_or_t2 = find_scope(req[-1][0])
assert type(string_or_t2) in [type(""), type((1,))]
if type(string_or_t2) == type(""):
return string_or_t2
else:
return string_or_t2[-1]
def extract_all_attribute(req):
extract_list = list(map(lambda t2: (t2[0][0], t2[1], t2[0][1]) ,
filter(lambda x: x[0] ,
map(lambda tt2_t2: (extract_scope(tt2_t2[0][0]), tt2_t2[1]) ,
filter(lambda t2_t2: "HEADER" in t2_t2[0][0] and "VALUE" in t2_t2[0][0] ,
filter(lambda string_or_t2_t2: type(string_or_t2_t2[0]) == type((1,)),
map(lambda tttt2: (find_scope(tttt2[0]), tttt2[1]),
req)))))))
return extract_list
def extract_attributes_relation_string(plain_text, all_attributes, res):
if not all_attributes:
return plain_text.replace(res if res else "", "")
def replace_by_one_l_r(text ,t3):
l, _, r = t3
##### produce multi l, r to satisfy string contrain problem
l0, l1 = l, l
r0, r1 = r, r
while l0 and l0 not in text:
l0 = l0[:-1]
while l1 and l1 not in text:
l1 = l1[1:]
while r0 and r0 not in text:
r0 = r0[:-1]
while r1 and r1 not in text:
r1 = r1[1:]
if not l or not r:
return text
conclusion = set([])
for l_, r_ in product([l0, l1], [r0, r1]):
l_r_conclusion = re.findall("({}.*?{})".format(l_, r_), text)
r_l_conclusion = re.findall("({}.*?{})".format(r_, l_), text)
conclusion = conclusion.union(set(l_r_conclusion + r_l_conclusion))
##### because use produce multi must choose the shortest elements from them
## to prevent "relation word" also be replaced.
conclusion_filtered = find_min_commmon_strings(conclusion)
conclusion = conclusion_filtered
req_text = text
for c in conclusion:
req_text = req_text.replace(c, "")
return req_text
req_text_ = plain_text
for t3 in all_attributes:
req_text_ = replace_by_one_l_r(req_text_, t3)
return req_text_.replace(res, "")
req = []
t2 = predict_single_sent(question)
req.append(t2)
while "[" in t2[0]:
scope = find_scope(t2[0])
if type(scope) == type(""):
break
else:
assert type(scope) == type((1,))
scope_text, res_text = scope
#ic(req)
t2 = predict_single_sent(res_text)
req.append(t2)
req = list(filter(lambda tt2: "HEADER" in tt2[0] and "VALUE" in tt2[0] , req))
res = produce_all_attribute_remove(req)
#ic(req)
all_attributes = extract_all_attribute(req)
# plain_text = produce_plain_text(scope_text)
return all_attributes, res, extract_attributes_relation_string(produce_plain_text(req[0][0] if req else ""), all_attributes, res)
def rec_more_time(decomp):
assert type(decomp) == type((1,)) and len(decomp) == 3
assert not decomp[0]
res, relation_string = decomp[1:]
new_decomp = recurrent_extract(relation_string)
#### stop if rec not help by new_decomp[1] != decomp[1]
if not new_decomp[0] and new_decomp[1] != decomp[1]:
return rec_more_time(new_decomp)
return (new_decomp[0], res, new_decomp[1])
### one sent conds decomp end
##### data source start
#train_path = "../TableQA/TableQA/train"
#train_path = "/Users/svjack/temp/gradio_prj/tableQA-Chinese-main/data/TableQA-master/train"
train_path = os.path.join(main_path, "data/TableQA-master/train")
def data_loader(table_json_path = os.path.join(train_path ,"train.tables.json"),
json_path = os.path.join(train_path ,"train.json"),
req_table_num = 1):
assert os.path.exists(table_json_path)
assert os.path.exists(json_path)
json_df = pd.read_json(json_path, lines = True)
all_tables = pd.read_json(table_json_path, lines = True)
if req_table_num is not None:
assert type(req_table_num) == type(0) and req_table_num > 0 and req_table_num <= all_tables.shape[0]
else:
req_table_num = all_tables.shape[0]
for i in range(req_table_num):
#one_table = all_tables.iloc[i]["table"]
#one_table_df = pd.read_sql("select * from `{}`".format(one_table), train_tables_dump_engine)
one_table_s = all_tables.iloc[i]
one_table_df = pd.DataFrame(one_table_s["rows"], columns = one_table_s["header"])
yield one_table_df, json_df[json_df["table_id"] == one_table_s["id"]]
## data source end
###### string toolkit start
def findMaxSubString(str1, str2):
"""
"""
maxSub = 0
maxSubString = ""
str1_len = len(str1)
str2_len = len(str2)
for i in range(str1_len):
str1_pos = i
for j in range(str2_len):
str2_pos = j
str1_pos = i
if str1[str1_pos] != str2[str2_pos]:
continue
else:
while (str1_pos < str1_len) and (str2_pos < str2_len):
if str1[str1_pos] == str2[str2_pos]:
str1_pos = str1_pos + 1
str2_pos = str2_pos + 1
else:
break
sub_len = str2_pos - j
if maxSub < sub_len:
maxSub = sub_len
maxSubString = str2[j:str2_pos]
return maxSubString
def find_min_commmon_strings(c):
##### {"jack", "ja", "ss", "sss", "ps", ""} -> {"ja", "ss", "ps"}
common_strings = list(filter(lambda x: type(x) == type("") ,
map(lambda t2: t2[0]
if t2[0] in t2[1]
else (t2[1]
if t2[1] in t2[0]
else (t2[0], t2[1])),combinations(c, 2))))
req = set([])
while c:
ele = c.pop()
if all(map(lambda cc: cc not in ele, common_strings)):
req.add(ele)
req = req.union(set(common_strings))
return set(filter(lambda x: x, req))
## string toolkit end
###### datetime column match start
#### only use object dtype to extract
def time_template_extractor(rows_filtered, pattern = u"[年月\.\-\d]+"):
#re_words = re.compile(u"[年月\.\-\d]+")
re_words = re.compile(pattern)
nest_collection = pd.DataFrame(rows_filtered).applymap(lambda x: tuple(sorted(list(re.findall(re_words, x))))).values.tolist()
def flatten_collection(c):
if not c:
return c
if type(c[0]) == type(""):
return c
else:
c = list(c)
return flatten_collection(reduce(lambda a, b: a + b, map(list ,c)))
return flatten_collection(nest_collection)
###@@ pattern_list
#pattern_list = [u"[年月\.\-\d]+", u"[年月\d]+", u"[年个月\d]+", u"[年月日\d]+"]
def justify_column_as_datetime(df, threshold = 0.8, time_template_extractor = lambda x: x):
object_columns = list(map(lambda tt2: tt2[0] ,filter(lambda t2: t2[1].name == "object" ,dict(df.dtypes).items())))
time_columns = []
for col in object_columns:
input_ = df[[col]].applymap(lambda x: "~" if type(x) != type("") else x)
output_ = time_template_extractor(input_.values.tolist())
input_ = input_.iloc[:, 0].values.tolist()
time_evidence_cnt = sum(map(lambda t2: t2[0].strip() == t2[1].strip() and t2[0] and t2[1] and t2[0] != "~" and t2[1] != "~",zip(input_, output_)))
if time_evidence_cnt > 0 and time_evidence_cnt / df.shape[0] >= threshold:
#### use evidence ratio because may have some noise in data
time_columns.append(col)
return time_columns
def justify_column_as_datetime_reduce(df, threshold = 0.8, time_template_extractor_list = list(map(lambda p: partial(time_template_extractor, pattern = p), pattern_list))):
return sorted(reduce(lambda a, b: a.union(b) ,map(lambda func: set(justify_column_as_datetime(df, threshold, func)), time_template_extractor_list)))
## datetime column match end
##### choose question column have a reduce function call below (choose_res_by_kws)
##### this is a tiny first version
###@@ time_kws = ("什么时候", "时间", "时候")
#time_kws = ("什么时候", "时间", "时候")
#####
def choose_question_column(decomp, header, df):
assert type(decomp) == type((1,)) and type(header) == type([])
time_columns = justify_column_as_datetime_reduce(df)
_, res, _ = decomp
if type(res) != type(""):
return None
#ic(res)
##### should add time kws to it.
#time_kws = ("什么时候", "时间", "时候")
if any(map(lambda t_kw: t_kw in res, time_kws)):
if len(time_columns) == 1:
return time_columns[0]
else:
'''
return sorted(map(lambda t_col: (t_col ,len(findMaxSubString(t_col, res)) / len(t_col)), time_columns),
key = lambda t2: t2[1])[::-1][0][0]
'''
sort_list = sorted(map(lambda t_col: (t_col ,len(findMaxSubString(t_col, res)) / len(t_col)), time_columns),
key = lambda t2: t2[1])[::-1]
if sort_list:
if sort_list[0]:
return sort_list[0][0]
return None
c_res_common_dict = dict(filter(lambda t2: t2[1] ,map(lambda c: (c ,findMaxSubString(c, res)), header)))
common_ratio_c_dict = dict(map(lambda t2: (t2[0], len(t2[1]) / len(t2[0])), c_res_common_dict.items()))
common_ratio_res_dict = dict(map(lambda t2: (t2[0], len(t2[1]) / len(res)), c_res_common_dict.items()))
#ic(decomp)
#ic(common_ratio_c_dict)
#ic(common_ratio_res_dict)
if not common_ratio_c_dict or not common_ratio_res_dict:
return None
dict_0_max_key = sorted(common_ratio_c_dict.items(), key = lambda t2: t2[1])[::-1][0][0]
dict_1_max_key = sorted(common_ratio_res_dict.items(), key = lambda t2: t2[1])[::-1][0][0]
return dict_0_max_key if dict_0_max_key == dict_1_max_key else None
##### agg-classifier start
'''
sum_count_high_kws = ('多少个', '有几个', '总共') + ('总和','一共',) + ("总数",)
mean_kws = ('平均数', '均值', '平均值', '平均')
max_kws = ('最大', '最多', '最大值', '最高')
min_kws = ('最少', '最小值', '最小', '最低')
sum_count_low_kws = ('个', '总共') + ('总和','加','总','一共','和',) + ("哪些", "查", "数量", "数") + ("几",) + ('多少', "多大") + ("总数",)
max_special_kws = ("以上", "大于")
min_special_kws = ("以下", "小于")
'''
###@@ sum_count_high_kws = ('多少个', '有几个', '总共') + ('总和','一共',) + ("总数",)
###@@ mean_kws = ('平均数', '均值', '平均值', '平均')
###@@ max_kws = ('最大', '最多', '最大值', '最高')
###@@ min_kws = ('最少', '最小值', '最小', '最低')
###@@ sum_count_low_kws = ('个', '总共') + ('总和','加','总','一共','和',) + ("哪些", "查", "数量", "数") + ("几",) + ('多少', "多大") + ("总数",)
###@@ max_special_kws = ("以上", "大于")
###@@ min_special_kws = ("以下", "小于")
def simple_label_func(s, drop_header = True):
text_tokens =s.question_cut
header = list(map(lambda x: x[:x.find("(")] if (not x.startswith("(") and x.endswith(")")) else x ,s.header.split(",")))
#### not contain samples may not match in fuzzy-match, special column mapping in finance,
### or "3" to "三"
'''
fit_collection = ('多少个', '有几个', '总共') + ('总和','一共',) + ('平均数', '均值', '平均值', '平均') + ('最大', '最多', '最大值', '最高') + ('最少', '最小值', '最小', '最低')
'''
fit_collection = sum_count_high_kws + mean_kws + max_kws + min_kws
fit_header = []
for c in header:
for kw in fit_collection:
if kw in c:
start_idx = c.find(kw)
end_idx = start_idx + len(kw)
fit_header.append(c[start_idx: end_idx])
if not drop_header:
header = []
fit_header = []
input_ = "".join(text_tokens)
for c in header + fit_header:
if c in fit_collection:
continue
input_ = input_.replace(c, "")
c0, c1 = c, c
while c0 and c0 not in fit_collection and len(c0) >= 4:
c0 = c0[1:]
if c0 in fit_collection:
break
input_ = input_.replace(c0, "")
while c1 and c1 not in fit_collection and len(c1) >= 4:
c1 = c1[:-1]
if c1 in fit_collection:
break
input_ = input_.replace(c1, "")
#ic(input_)
text_tokens = list(jieba.cut(input_))
#cat_6_collection_high_level = ('多少个', '有几个', '总共') + ('总和','一共',) + ("哪些", "查", "数量")
#cat_6_collection_high_level = ('多少个', '有几个', '总共') + ('总和','一共',)
##### 高置信度部分 (作为是否构成使用特殊规则的判断标准)
#### case 2 部分 (高置信度有效匹配)
#cat_6_collection_high_level = ('多少个', '有几个', '总共') + ('总和','一共',)
#cat_6_collection_high_level = ('多少个', '有几个', '总共') + ('总和','一共',) + ("总数",)
cat_6_collection_high_level = sum_count_high_kws
if any(map(lambda high_level_token: high_level_token in "".join(text_tokens), cat_6_collection_high_level)):
return 6
#### 够深 够宽 规则部分, change order by header, if header have kws in , lower order
if any(map(lambda kw: kw in text_tokens, mean_kws)):
return 1
if any(map(lambda kw: kw in text_tokens, max_kws)):
return 2
if any(map(lambda kw: kw in text_tokens, min_kws)):
return 3
##### 低置信度部分
#### case 2 部分 (低置信度尾部匹配)
cat_6_collection = sum_count_low_kws
if any(map(lambda kw: kw in text_tokens, cat_6_collection)):
return 6
if any(map(lambda token: "几" in token, text_tokens)):
return 6
#### special case 部分
if any(map(lambda kw: kw in text_tokens, max_special_kws)):
return 2
if any(map(lambda kw: kw in text_tokens, min_special_kws)):
return 3
#### 无效匹配
return 0
def simple_special_func(s, drop_header = True):
text_tokens =s.question_cut
header = list(map(lambda x: x[:x.find("(")] if (not x.startswith("(") and x.endswith(")")) else x ,s.header.split(",")))
#### not contain samples may not match in fuzzy-match, special column mapping in finance,
### or "3" to "三"
fit_collection = sum_count_high_kws + mean_kws + max_kws + min_kws
fit_header = []
for c in header:
for kw in fit_collection:
if kw in c:
start_idx = c.find(kw)
end_idx = start_idx + len(kw)
fit_header.append(c[start_idx: end_idx])
input_ = "".join(text_tokens)
if not drop_header:
header = []
fit_header = []
for c in header + fit_header:
if c in fit_collection:
continue
input_ = input_.replace(c, "")
c0, c1 = c, c
while c0 and c0 not in fit_collection and len(c0) >= 4:
c0 = c0[1:]
if c0 in fit_collection:
break
input_ = input_.replace(c0, "")
while c1 and c1 not in fit_collection and len(c1) >= 4:
c1 = c1[:-1]
if c1 in fit_collection:
break
input_ = input_.replace(c1, "")
#ic(input_)
text_tokens = list(jieba.cut(input_))
#ic(text_tokens)
#cat_6_collection_high_level = ('多少个', '有几个', '总共') + ('总和','一共',) + ("哪些", "查", "数量")
#cat_6_collection_high_level = ('多少个', '有几个', '总共') + ('总和','一共',)
#### case 2 部分 (高置信度有效匹配)
cat_6_collection_high_level = sum_count_high_kws
if any(map(lambda high_level_token: high_level_token in "".join(text_tokens), cat_6_collection_high_level)):
return 6
#### 够深 够宽 规则部分, change order by header, if header have kws in , lower order
if any(map(lambda kw: kw in text_tokens, mean_kws)):
return 1
if any(map(lambda kw: kw in text_tokens, max_kws)):
return 2
if any(map(lambda kw: kw in text_tokens, min_kws)):
return 3
return 0
def simple_total_label_func(s):
is_special = False if simple_special_func(s) == 0 else True
if not is_special:
return 0
return simple_label_func(s)
## agg-classifier end
##### main block of process start
def split_by_cond(s, extract_return = True):
def recurrent_extract_cond(text):
#return np.asarray(recurrent_extract(text)[0])
#return recurrent_extract(text)[0]
return np.asarray(list(recurrent_extract(text)[0]))
question = s["question"]
res = s["rec_decomp"][1]
if question is None:
question = ""
if res is None:
res = ""
common_res = findMaxSubString(question, res)
#cond_kws = ("或", "而且", "并且", "当中")
#cond_kws = ("或", "而且" "并且" "当中")
cond_kws = conn_kws
condition_part = question.replace(common_res, "")
fit_kws = set([])
for kw in cond_kws:
if kw in condition_part and not condition_part.startswith(kw) and not condition_part.endswith(kw):
fit_kws.add(kw)
if not fit_kws:
will_return = ([condition_part.replace(" ", "") + " " + common_res], "")
if extract_return:
#return (list(map(recurrent_extract_cond, will_return[0])), will_return[1])
will_return = (np.asarray(list(map(recurrent_extract_cond, will_return[0]))) , will_return[1])
#will_return = (np.concatenate(list(filter(lambda x: x.size ,map(np.asarray ,will_return[0].tolist()))), axis = 0), will_return[1])
#will_return = (np.concatenate(list(map(np.asarray ,will_return[0].tolist())), axis = 0), will_return[1])
input_ = list(filter(lambda x: x.size ,map(np.asarray ,will_return[0].tolist())))
if input_:
will_return = (np.concatenate(input_, axis = 0), will_return[1])
else:
will_return = (np.empty((0, 3)), will_return[1])
will_return = will_return[0].reshape((-1, 3)) if will_return[0].size else np.empty((0, 3))
return will_return
fit_kw = sorted(fit_kws, key = len)[::-1][0]
condition_part_splits = condition_part.split(fit_kw)
#if fit_kw in ("或",):
if fit_kw in or_kws:
fit_kw = "or"
#elif fit_kw in ("而且", "并且", "当中",):
elif fit_kw in and_kws:
fit_kw = "and"
else:
fit_kw = ""
will_return = (list(map(lambda cond_: cond_.replace(" ", "") + " " + common_res, condition_part_splits)), fit_kw)
if extract_return:
#return (list(map(recurrent_extract_cond, will_return[0])), will_return[1])
will_return = (np.asarray(list(map(recurrent_extract_cond, will_return[0]))), will_return[1])
#ic(will_return[0])
#will_return = (np.concatenate(list(map(np.asarray ,will_return[0].tolist())), axis = 0), will_return[1])
input_ = list(filter(lambda x: x.size ,map(np.asarray ,will_return[0].tolist())))
if input_:
will_return = (np.concatenate(input_, axis = 0), will_return[1])
else:
will_return = (np.empty((0, 3)), will_return[1])
#ic(will_return[0])
will_return = will_return[0].reshape((-1, 3)) if will_return[0].size else np.empty((0, 3))
return will_return
def filter_total_conds(s, df, condition_fit_num = 0):
assert condition_fit_num >= 0 and type(condition_fit_num) == type(0)
df = df.copy()
#### some col not as float with only "None" as cell, also transform them into float
df = df.applymap(lambda x: np.nan if x in ["None", None, "/"] else x)
def justify_column_as_float(s):
if "float" in str(s.dtype):
return True
if all(s.map(type).map(lambda tx: "float" in str(tx))):
return True
return False
float_cols = list(map(lambda tt2: tt2[0],filter(lambda t2: t2[1] ,df.apply(justify_column_as_float, axis = 0).to_dict().items())))
for f_col in float_cols:
df[f_col] = df[f_col].astype(np.float64)
###
header = df.columns.tolist()
units_cols = filter(lambda c: "(" in c and c.endswith(")"), df.columns.tolist())
if not float_cols:
float_discribe_df = pd.DataFrame()
else:
float_discribe_df = df[float_cols].describe()
def call_eval(val):
try:
return literal_eval(val)
except:
return val
#### find condition column same as question_column
def find_cond_col(res, header):
#ic(res, header)
c_res_common_dict = dict(filter(lambda t2: t2[1] ,map(lambda c: (c ,findMaxSubString(c, res)), header)))
#ic(c_res_common_dict)
common_ratio_c_dict = dict(map(lambda t2: (t2[0], len(t2[1]) / len(t2[0])), c_res_common_dict.items()))
common_ratio_res_dict = dict(map(lambda t2: (t2[0], len(t2[1]) / len(res)), c_res_common_dict.items()))
if not common_ratio_c_dict or not common_ratio_res_dict:
return None
dict_0_max_key = sorted(common_ratio_c_dict.items(), key = lambda t2: t2[1])[::-1][0][0]
dict_1_max_key = sorted(common_ratio_res_dict.items(), key = lambda t2: t2[1])[::-1][0][0]
return dict_0_max_key if dict_0_max_key == dict_1_max_key else None
###
#### type comptatible in column type and value type, and fit_num match
def filter_cond_col(cond_t3):
assert type(cond_t3) == type((1,)) and len(cond_t3) == 3
col, _, value = cond_t3
if type(value) == type(""):
value = call_eval(value)
if col not in df.columns.tolist():
return False
#### type key value comp
if col in float_cols and type(value) not in (type(0), type(0.0)):
return False
if col not in float_cols and type(value) in (type(0), type(0.0)):
return False
#### string value not in corr column
if col not in float_cols and type(value) not in (type(0), type(0.0)):
if type(value) == type(""):
if value not in df[col].tolist():
return False
if type(value) in (type(0), type(0.0)):
if col in float_discribe_df.columns.tolist():
if condition_fit_num > 0:
if value >= float_discribe_df[col].loc["min"] and value <= float_discribe_df[col].loc["max"]:
return True
else:
return False
else:
assert condition_fit_num == 0
return True
if condition_fit_num > 0:
if value in df[col].tolist():
return True
else:
return False
else:
assert condition_fit_num == 0
return True
return True
###
#### condtions with same column may have conflict, choose the nearest one by stats in float or
### common_string as find_cond_col do.
def same_column_cond_filter(cond_list, sort_stats = "mean"):
#ic(cond_list)
if len(cond_list) == len(set(map(lambda t3: t3[0] ,cond_list))):
return cond_list
req = defaultdict(list)
for t3 in cond_list:
req[t3[0]].append(t3[1:])
def t2_list_sort(col_name ,t2_list):
if not t2_list:
return None
t2 = None
if col_name in float_cols:
t2 = sorted(t2_list, key = lambda t2: np.abs(t2[1] - float_discribe_df[col_name].loc[sort_stats]))[0]
else:
if all(map(lambda t2: type(t2[1]) == type("") ,t2_list)):
col_val_cnt_df = df[col_name].value_counts().reset_index()
col_val_cnt_df.columns = ["val", "cnt"]
#col_val_cnt_df["val"].map(lambda x: sorted(filter(lambda tt2: tt2[-1] ,map(lambda t2: (t2 ,len(findMaxSubString(x, t2[1]))), t2_list)),
# key = lambda ttt2: -1 * ttt2[-1])[0])
t2_list_map_to_column_val = list(filter(lambda x: x[1] ,map(lambda t2: (t2[0] ,find_cond_col(t2[1], list(set(col_val_cnt_df["val"].values.tolist())))), t2_list)))
if t2_list_map_to_column_val:
#### return max length fit val in column
t2 = sorted(t2_list_map_to_column_val, key = lambda t2: -1 * len(t2[1]))[0]
if t2 is None and t2_list:
t2 = t2_list[0]
return t2
cond_list_filtered = list(map(lambda ttt2: (ttt2[0], ttt2[1][0], ttt2[1][1]) ,
filter(lambda tt2: tt2[1] ,map(lambda t2: (t2[0] ,t2_list_sort(t2[0], t2[1])), req.items()))))
return cond_list_filtered
###
total_conds_map_to_column = list(map(lambda t3: (find_cond_col(t3[0], header), t3[1], t3[2]), s["total_conds"]))
total_conds_map_to_column_filtered = list(filter(filter_cond_col, total_conds_map_to_column))
total_conds_map_to_column_filtered = sorted(set(map(lambda t3: (t3[0], t3[1], call_eval(t3[2]) if type(t3[2]) == type("") else t3[2]), total_conds_map_to_column_filtered)))
#ic(total_conds_map_to_column_filtered)
cp_cond_list = list(filter(lambda t3: t3[1] in (">", "<"), total_conds_map_to_column_filtered))
eq_cond_list = list(filter(lambda t3: t3[1] in ("==", "!="), total_conds_map_to_column_filtered))
cp_cond_list_filtered = same_column_cond_filter(cp_cond_list)
#total_conds_map_to_column_filtered = same_column_cond_filter(total_conds_map_to_column_filtered)
return cp_cond_list_filtered + eq_cond_list
#return total_conds_map_to_column_filtered
###@@ only_kws_columns = {"城市": "=="}
#### this function only use to cond can not extract by JointBert,
### may because not contain column string in question such as "城市" or difficult to extract kw
### define kw column as all cells in series are string type.
### this function support config relation to column and if future
### want to auto extract relation, this may can be done by head string or tail string by edit pattern "\w?{}\w?"
### "是" or "不是" can be extract in this manner.
def augment_kw_in_question(question_df, df, only_kws_in_string = []):
#### keep only_kws_in_string empty to maintain all condition
question_df = question_df.copy()
#df = df.copy()
def call_eval(val):
try:
return literal_eval(val)
except:
return val
df = df.copy()
df = df.applymap(call_eval)
#### some col not as float with only "None" as cell, also transform them into float
df = df.applymap(lambda x: np.nan if x in ["None", None, "/"] else x)
def justify_column_as_float(s):
if "float" in str(s.dtype):
return True
if all(s.map(type).map(lambda tx: "float" in str(tx))):
return True
return False
float_cols = list(map(lambda tt2: tt2[0],filter(lambda t2: t2[1] ,df.apply(justify_column_as_float, axis = 0).to_dict().items())))
#obj_cols = set(df.columns.tolist()).difference(set(float_cols))
def justify_column_as_kw(s):
if all(s.map(type).map(lambda tx: "str" in str(tx))):
return True
return False
obj_cols = list(map(lambda tt2: tt2[0],filter(lambda t2: t2[1] ,df.apply(justify_column_as_kw, axis = 0).to_dict().items())))
obj_cols = list(set(obj_cols).difference(set(float_cols)))
if only_kws_columns:
obj_cols = list(set(obj_cols).intersection(set(only_kws_columns.keys())))
#replace_format = "{}是{}"
#kw_augmented_df = pd.DataFrame(df[obj_cols].apply(lambda s: list(map(lambda val :(val,replace_format.format(s.name, val)), s.tolist())), axis = 0).values.tolist())
#kw_augmented_df.columns = obj_cols
kw_augmented_df = df[obj_cols].copy()
#ic(kw_augmented_df)
def extract_question_kws(question):
if not kw_augmented_df.size:
return []
req = defaultdict(set)
for ridx, r in kw_augmented_df.iterrows():
for k, v in dict(r).items():
if v in question:
pattern = "\w?{}\w?".format(v)
all_match = re.findall(pattern, question)
#req = req.union(set(all_match))
#req[v] = req[v].union(set(all_match))
key = "{}~{}".format(k, v)
req[key] = req[key].union(set(all_match))
#ic(k, v)
#question = question.replace(v[0], v[1])
#return question.replace(replace_format.format("","") * 2, replace_format.format("",""))
#req = list(req)
if only_kws_in_string:
req = list(map(lambda tt2: tt2[0] ,filter(lambda t2: sum(map(lambda kw: sum(map(lambda t: kw in t ,t2[1])), only_kws_in_string)), req.items())))
else:
req = list(set(req.keys()))
def req_to_t3(req_string, relation = "=="):
assert "~" in req_string
left, right = req_string.split("~")
if left in only_kws_columns:
relation = only_kws_columns[left]
return (left, relation, right)
if not req:
return []
return list(map(req_to_t3, req))
#return req
question_df["question_kw_conds"] = question_df["question"].map(extract_question_kws)
return question_df
def choose_question_column_by_rm_conds(s, df):
question = s.question
total_conds_filtered = s.total_conds_filtered
#cond_kws = ("或", "而且", "并且", "当中")
cond_kws = conn_kws
stopwords = ("是", )
#ic(total_conds_filtered)
def construct_res(question):
for k, _, v in total_conds_filtered:
if "(" in k:
k = k[:k.find("(")]
#ic(k)
question = question.replace(str(k), "")
question = question.replace(str(v), "")
for w in cond_kws + stopwords:
question = question.replace(w, "")
return question
res = construct_res(question)
decomp = (None, res, None)
return choose_question_column(decomp, df.columns.tolist(), df)
def split_qst_by_kw(question, kw = "的"):
return question.split(kw)
#qst_kws = ("多少", "什么", "多大", "哪些", "怎么", "情况", "那些", "哪个")
###@@ qst_kws = ("多少", "什么", "多大", "哪些", "怎么", "情况", "那些", "哪个")
def choose_res_by_kws(question):
#kws = ["的","多少", '是']
question = question.replace(" ", "")
#kws = ["的","或者","或", "且","并且","同时"]
kws = ("的",) + conn_kws
kws = list(kws)
def qst_kw_filter(text):
#qst_kws = ("多少", "什么", "多大", "哪些", "怎么", "情况", "那些", "哪个")
if any(map(lambda kw: kw in text, qst_kws)):
return True
return False
kws_cp = deepcopy(kws)
qst_c = set(question.split(","))
while kws:
kw = kws.pop()
qst_c = qst_c.union(set(filter(qst_kw_filter ,reduce(lambda a, b: a + b,map(lambda q: split_qst_by_kw(q, kw), qst_c))))
)
#print("-" * 10)
#print(sorted(filter(lambda x: x and (x not in kws_cp) ,qst_c), key = len))
#print(sorted(filter(lambda x: x and (x not in kws_cp) and qst_kw_filter(x) ,qst_c), key = len))
#### final choose if or not
return sorted(filter(lambda x: x and (x not in kws_cp) and qst_kw_filter(x) ,qst_c), key = len)
#return sorted(filter(lambda x: x and (x not in kws_cp) and True ,qst_c), key = len)
def cat6_to_45_by_column_type(s, df):
agg_pred = s.agg_pred
if agg_pred != 6:
return agg_pred
question_column = s.question_column
def call_eval(val):
try:
return literal_eval(val)
except:
return val
df = df.copy()
df = df.applymap(call_eval)
#### some col not as float with only "None" as cell, also transform them into float
df = df.applymap(lambda x: np.nan if x in ["None", None, "/"] else x)
def justify_column_as_float(s):
if "float" in str(s.dtype):
return True
if all(s.map(type).map(lambda tx: "float" in str(tx))):
return True
return False
float_cols = list(map(lambda tt2: tt2[0],filter(lambda t2: t2[1] ,df.apply(justify_column_as_float, axis = 0).to_dict().items())))
#obj_cols = set(df.columns.tolist()).difference(set(float_cols))
def justify_column_as_kw(s):
if all(s.map(type).map(lambda tx: "str" in str(tx))):
return True
return False
#obj_cols = list(map(lambda tt2: tt2[0],filter(lambda t2: t2[1] ,df.apply(justify_column_as_kw, axis = 0).to_dict().items())))
obj_cols = df.columns.tolist()
obj_cols = list(set(obj_cols).difference(set(float_cols)))
#ic(obj_cols, float_cols, df.columns.tolist())
assert len(obj_cols) + len(float_cols) == df.shape[1]
if question_column in obj_cols:
return 4
elif question_column in float_cols:
return 5
else:
return 0
def full_before_cat_decomp(df, question_df, only_req_columns = False):
df, question_df = df.copy(), question_df.copy()
first_train_question_extract_df = pd.DataFrame(question_df["question"].map(lambda question: (question, recurrent_extract(question))).tolist())
first_train_question_extract_df.columns = ["question", "decomp"]
first_train_question_extract_df = augment_kw_in_question(first_train_question_extract_df, df)
first_train_question_extract_df["rec_decomp"] = first_train_question_extract_df["decomp"].map(lambda decomp: decomp if decomp[0] else rec_more_time(decomp))
#return first_train_question_extract_df.copy()
first_train_question_extract_df["question_cut"] = first_train_question_extract_df["rec_decomp"].map(lambda t3: jieba.cut(t3[1]) if t3[1] is not None else []).map(list)
first_train_question_extract_df["header"] = ",".join(df.columns.tolist())
first_train_question_extract_df["question_column_res"] = first_train_question_extract_df["rec_decomp"].map(lambda decomp: choose_question_column(decomp, df.columns.tolist(), df))
#### agg
first_train_question_extract_df["agg_res_pred"] = first_train_question_extract_df.apply(simple_total_label_func, axis = 1)
first_train_question_extract_df["question_cut"] = first_train_question_extract_df["question"].map(jieba.cut).map(list)
first_train_question_extract_df["agg_qst_pred"] = first_train_question_extract_df.apply(simple_total_label_func, axis = 1)
### if agg_res_pred and agg_qst_pred have conflict use max, to prevent from empty agg with errorous question column
### but this "max" can also be replaced by measure the performance of decomp part, and choose the best one
### or we can use agg_qst_pred with high balanced_score as 0.86+ in imbalanced dataset.
### which operation to use need some discussion.
### (balanced_accuracy_score(lookup_df["sql"], lookup_df["agg_pred"]),
### balanced_accuracy_score(lookup_df["sql"], lookup_df["agg_res_pred"]),
### balanced_accuracy_score(lookup_df["sql"], lookup_df["agg_qst_pred"]))
### (0.9444444444444445, 0.861111111111111, 0.9444444444444445) first_train_df conclucion
### (1.0, 0.8333333333333333, 1.0) cat6_conclucion
### this show that res worse in cat6 situation, but the agg-classifier construct is sufficent to have a
### good conclusion in full-question. (because cat6 is the most accurate part in Tupledire tree sense.)
### so use max as the best one
first_train_question_extract_df["agg_pred"] = first_train_question_extract_df.apply(lambda s: max(s.agg_res_pred, s.agg_qst_pred), axis = 1)
#### conn and conds
first_train_question_extract_df["conds"] = first_train_question_extract_df["rec_decomp"].map(lambda x: x[0])
first_train_question_extract_df["split_conds"] = first_train_question_extract_df.apply(split_by_cond, axis = 1).values.tolist()
first_train_question_extract_df["conn_pred"] = first_train_question_extract_df.apply(lambda s: split_by_cond(s, extract_return=False), axis = 1).map(lambda x: x[-1]).values.tolist()
#first_train_question_extract_df["total_conds"] = first_train_question_extract_df.apply(lambda s: list(set(map(tuple,s["conds"] + s["split_conds"].tolist()))), axis = 1).values.tolist()
first_train_question_extract_df["total_conds"] = first_train_question_extract_df.apply(lambda s: list(set(map(tuple,s["question_kw_conds"] + s["conds"] + s["split_conds"].tolist()))), axis = 1).values.tolist()
first_train_question_extract_df["total_conds_filtered"] = first_train_question_extract_df.apply(lambda s: filter_total_conds(s, df), axis = 1).values.tolist()
#### question_column_res more accurate, if not fit then use full-question question_column_qst to extract
### can not fit multi question or fuzzy describe, or question need kw replacement.
#first_train_question_extract_df["question_column_qst"] = first_train_question_extract_df.apply(lambda s: choose_question_column_by_rm_conds(s, df), axis = 1)
first_train_question_extract_df["question_column_qst"] = first_train_question_extract_df["question"].map(choose_res_by_kws).map(lambda res_list: list(filter(lambda x: x ,map(lambda res: choose_question_column((None, res, None), df.columns.tolist(), df), res_list)))).map(lambda x: x[0] if x else None)
first_train_question_extract_df["question_column"] = first_train_question_extract_df.apply(lambda s: s.question_column_res if s.question_column_res is not None else s.question_column_qst, axis = 1)
#### predict cat6 to 4 5 based on question_column and column dtype,
#### this may performance bad if question_column has error,
#### and almost 100% accurate if question_column truly provide and user is not an idoit (speak ....)
agg_sql_dict = {0:"", 1:"AVG", 2:"MAX", 3:"MIN", 4:"COUNT", 5:"SUM"}
first_train_question_extract_df["agg_pred"] = first_train_question_extract_df.apply(lambda s: cat6_to_45_by_column_type(s, df), axis = 1).map(lambda x: agg_sql_dict[x])
if only_req_columns:
return first_train_question_extract_df[["question",
"total_conds_filtered",
"conn_pred",
"question_column",
"agg_pred"
]].copy()
return first_train_question_extract_df.copy()
if __name__ == "__main__":
###### valid block
req = list(data_loader(req_table_num=None))
train_df, _ = req[2]
train_df
question = "哪些股票的收盘价大于20?"
qs_df = pd.DataFrame([[question]], columns = ["question"])
ic(question)
ic(full_before_cat_decomp(train_df, qs_df, only_req_columns=True))
#### not support select 股票 from table where 市值 = (select max(市值) from table)
#### this is a nest sql.
question = "哪个股票代码市值最高?"
qs_df = pd.DataFrame([[question]], columns = ["question"])
ic(question)
ic(full_before_cat_decomp(train_df, qs_df, only_req_columns=True))
question = "市值的最大值是多少?"
qs_df = pd.DataFrame([[question]], columns = ["question"])
ic(question)
ic(full_before_cat_decomp(train_df, qs_df, only_req_columns=True))
question = "EPS大于0的股票有哪些?"
qs_df = pd.DataFrame([[question]], columns = ["question"])
ic(question)
ic(full_before_cat_decomp(train_df, qs_df, only_req_columns=True))
question = "EPS大于0且周涨跌大于5的平均市值是多少?"
qs_df = pd.DataFrame([[question]], columns = ["question"])
ic(question)
ic(full_before_cat_decomp(train_df, qs_df, only_req_columns=True))
train_df, _ = req[5]
train_df
question = "产能小于20、销量大于40而且市场占有率超过1的公司有哪些?"
qs_df = pd.DataFrame([[question]], columns = ["question"])
ic(question)
ic(full_before_cat_decomp(train_df, qs_df, only_req_columns=True))
#### 特殊符号 "、"
question = "产能小于20而且销量大于40而且市场占有率超过1的公司有哪些?"
qs_df = pd.DataFrame([[question]], columns = ["question"])
ic(question)
ic(full_before_cat_decomp(train_df, qs_df, only_req_columns=True))
train_df, _ = req[6]
train_df
#### 加入列别名 只需要 复刻列即可
question = "投资评级为维持的名称有哪些?"
qs_df = pd.DataFrame([[question]], columns = ["question"])
ic(question)
ic(full_before_cat_decomp(train_df, qs_df, only_req_columns=True))
train_df["公司"] = train_df["名称"]
question = "投资评级为维持的公司有哪些?"
qs_df = pd.DataFrame([[question]], columns = ["question"])
ic(question)
ic(full_before_cat_decomp(train_df, qs_df, only_req_columns=True))
question = "投资评级为维持而且变动为增持的公司有哪些?"
qs_df = pd.DataFrame([[question]], columns = ["question"])
ic(question)
ic(full_before_cat_decomp(train_df, qs_df, only_req_columns=True))
question = "投资评级为维持或者变动为增持的公司有哪些?"
qs_df = pd.DataFrame([[question]], columns = ["question"])
ic(question)
ic(full_before_cat_decomp(train_df, qs_df, only_req_columns=True))
question = "投资评级为维持或者变动为增持的平均收盘价是多少?"
qs_df = pd.DataFrame([[question]], columns = ["question"])
ic(question)
ic(full_before_cat_decomp(train_df, qs_df, only_req_columns=True))
train_df, _ = req[7]
train_df
question = "宁波的一手房每周交易数据上周成交量是多少?"
qs_df = pd.DataFrame([[question]], columns = ["question"])
ic(question)
ic(full_before_cat_decomp(train_df, qs_df, only_req_columns=True))
question = "一手房每周交易数据为宁波上周成交量是多少?"
qs_df = pd.DataFrame([[question]], columns = ["question"])
ic(question)
ic(full_before_cat_decomp(train_df, qs_df, only_req_columns=True))
#### this also can deal with set column as use kw to extract
### see function augment_kw_in_question
train_df["城市"] = train_df["一手房每周交易数据"]
question = "一手房每周交易数据为宁波上周成交量是多少?"
qs_df = pd.DataFrame([[question]], columns = ["question"])
ic(question)
ic(full_before_cat_decomp(train_df, qs_df, only_req_columns=True))
question = "王翔知道宁波一手房的当月累计成交量是多少吗?"
qs_df = pd.DataFrame([[question]], columns = ["question"])
ic(question)
ic(full_before_cat_decomp(train_df, qs_df, only_req_columns=True))
question = "王翔知道上周成交量大于50的最大同比当月是多少吗?"
qs_df = pd.DataFrame([[question]], columns = ["question"])
ic(question)
ic(full_before_cat_decomp(train_df, qs_df, only_req_columns=True))
train_df, _ = req[9]
#### the last column should be "周跌幅", can't tackle duplicates columns
train_df
cols = train_df.columns.tolist()
cols[-1] = "周跌幅(%)"
train_df.columns = cols
question = "周涨幅大于7的涨股有哪些?"
qs_df = pd.DataFrame([[question]], columns = ["question"])
ic(question)
ic(full_before_cat_decomp(train_df, qs_df, only_req_columns=True))
#### not recognize as 6 agg-classifier
question = "周涨幅大于7的涨股总数是多少?"
qs_df = pd.DataFrame([[question]], columns = ["question"])
ic(question)
ic(full_before_cat_decomp(train_df, qs_df, only_req_columns=True))
question = "周涨幅大于7的涨股总共有多少个?"
qs_df = pd.DataFrame([[question]], columns = ["question"])
ic(question)
ic(full_before_cat_decomp(train_df, qs_df, only_req_columns=True))
|