Spaces:
Running
Running
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved. | |
import math | |
import numpy as np | |
import torch | |
import torch.amp as amp | |
import torch.nn as nn | |
from diffusers.configuration_utils import ConfigMixin | |
from diffusers.configuration_utils import register_to_config | |
from diffusers.loaders import PeftAdapterMixin | |
from diffusers.models.modeling_utils import ModelMixin | |
from torch.backends.cuda import sdp_kernel | |
from torch.nn.attention.flex_attention import BlockMask | |
from torch.nn.attention.flex_attention import create_block_mask | |
from torch.nn.attention.flex_attention import flex_attention | |
from .attention import flash_attention | |
flex_attention = torch.compile(flex_attention, dynamic=False, mode="max-autotune") | |
DISABLE_COMPILE = False # get os env | |
__all__ = ["WanModel"] | |
def sinusoidal_embedding_1d(dim, position): | |
# preprocess | |
assert dim % 2 == 0 | |
half = dim // 2 | |
position = position.type(torch.float64) | |
# calculation | |
sinusoid = torch.outer(position, torch.pow(10000, -torch.arange(half).to(position).div(half))) | |
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1) | |
return x | |
def rope_params(max_seq_len, dim, theta=10000): | |
assert dim % 2 == 0 | |
freqs = torch.outer( | |
torch.arange(max_seq_len), 1.0 / torch.pow(theta, torch.arange(0, dim, 2).to(torch.float32).div(dim)) | |
) | |
freqs = torch.polar(torch.ones_like(freqs), freqs) | |
return freqs | |
def rope_apply(x, grid_sizes, freqs): | |
n, c = x.size(2), x.size(3) // 2 | |
bs = x.size(0) | |
# split freqs | |
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1) | |
# loop over samples | |
f, h, w = grid_sizes.tolist() | |
seq_len = f * h * w | |
# precompute multipliers | |
x = torch.view_as_complex(x.to(torch.float32).reshape(bs, seq_len, n, -1, 2)) | |
freqs_i = torch.cat( | |
[ | |
freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1), | |
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1), | |
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1), | |
], | |
dim=-1, | |
).reshape(seq_len, 1, -1) | |
# apply rotary embedding | |
x = torch.view_as_real(x * freqs_i).flatten(3) | |
return x | |
def fast_rms_norm(x, weight, eps): | |
x = x.float() | |
x = x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + eps) | |
x = x.type_as(x) * weight | |
return x | |
class WanRMSNorm(nn.Module): | |
def __init__(self, dim, eps=1e-5): | |
super().__init__() | |
self.dim = dim | |
self.eps = eps | |
self.weight = nn.Parameter(torch.ones(dim)) | |
def forward(self, x): | |
r""" | |
Args: | |
x(Tensor): Shape [B, L, C] | |
""" | |
return fast_rms_norm(x, self.weight, self.eps) | |
def _norm(self, x): | |
return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps) | |
class WanLayerNorm(nn.LayerNorm): | |
def __init__(self, dim, eps=1e-6, elementwise_affine=False): | |
super().__init__(dim, elementwise_affine=elementwise_affine, eps=eps) | |
def forward(self, x): | |
r""" | |
Args: | |
x(Tensor): Shape [B, L, C] | |
""" | |
return super().forward(x) | |
class WanSelfAttention(nn.Module): | |
def __init__(self, dim, num_heads, window_size=(-1, -1), qk_norm=True, eps=1e-6): | |
assert dim % num_heads == 0 | |
super().__init__() | |
self.dim = dim | |
self.num_heads = num_heads | |
self.head_dim = dim // num_heads | |
self.window_size = window_size | |
self.qk_norm = qk_norm | |
self.eps = eps | |
# layers | |
self.q = nn.Linear(dim, dim) | |
self.k = nn.Linear(dim, dim) | |
self.v = nn.Linear(dim, dim) | |
self.o = nn.Linear(dim, dim) | |
self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
self._flag_ar_attention = False | |
def set_ar_attention(self): | |
self._flag_ar_attention = True | |
def forward(self, x, grid_sizes, freqs, block_mask): | |
r""" | |
Args: | |
x(Tensor): Shape [B, L, num_heads, C / num_heads] | |
seq_lens(Tensor): Shape [B] | |
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W) | |
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] | |
""" | |
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim | |
# query, key, value function | |
def qkv_fn(x): | |
q = self.norm_q(self.q(x)).view(b, s, n, d) | |
k = self.norm_k(self.k(x)).view(b, s, n, d) | |
v = self.v(x).view(b, s, n, d) | |
return q, k, v | |
x = x.to(self.q.weight.dtype) | |
q, k, v = qkv_fn(x) | |
if not self._flag_ar_attention: | |
q = rope_apply(q, grid_sizes, freqs) | |
k = rope_apply(k, grid_sizes, freqs) | |
x = flash_attention(q=q, k=k, v=v, window_size=self.window_size) | |
else: | |
q = rope_apply(q, grid_sizes, freqs) | |
k = rope_apply(k, grid_sizes, freqs) | |
q = q.to(torch.bfloat16) | |
k = k.to(torch.bfloat16) | |
v = v.to(torch.bfloat16) | |
with sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False): | |
x = ( | |
torch.nn.functional.scaled_dot_product_attention( | |
q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), attn_mask=block_mask | |
) | |
.transpose(1, 2) | |
.contiguous() | |
) | |
# output | |
x = x.flatten(2) | |
x = self.o(x) | |
return x | |
class WanT2VCrossAttention(WanSelfAttention): | |
def forward(self, x, context): | |
r""" | |
Args: | |
x(Tensor): Shape [B, L1, C] | |
context(Tensor): Shape [B, L2, C] | |
context_lens(Tensor): Shape [B] | |
""" | |
b, n, d = x.size(0), self.num_heads, self.head_dim | |
# compute query, key, value | |
q = self.norm_q(self.q(x)).view(b, -1, n, d) | |
k = self.norm_k(self.k(context)).view(b, -1, n, d) | |
v = self.v(context).view(b, -1, n, d) | |
# compute attention | |
x = flash_attention(q, k, v) | |
# output | |
x = x.flatten(2) | |
x = self.o(x) | |
return x | |
class WanI2VCrossAttention(WanSelfAttention): | |
def __init__(self, dim, num_heads, window_size=(-1, -1), qk_norm=True, eps=1e-6): | |
super().__init__(dim, num_heads, window_size, qk_norm, eps) | |
self.k_img = nn.Linear(dim, dim) | |
self.v_img = nn.Linear(dim, dim) | |
# self.alpha = nn.Parameter(torch.zeros((1, ))) | |
self.norm_k_img = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity() | |
def forward(self, x, context): | |
r""" | |
Args: | |
x(Tensor): Shape [B, L1, C] | |
context(Tensor): Shape [B, L2, C] | |
context_lens(Tensor): Shape [B] | |
""" | |
context_img = context[:, :257] | |
context = context[:, 257:] | |
b, n, d = x.size(0), self.num_heads, self.head_dim | |
# compute query, key, value | |
q = self.norm_q(self.q(x)).view(b, -1, n, d) | |
k = self.norm_k(self.k(context)).view(b, -1, n, d) | |
v = self.v(context).view(b, -1, n, d) | |
k_img = self.norm_k_img(self.k_img(context_img)).view(b, -1, n, d) | |
v_img = self.v_img(context_img).view(b, -1, n, d) | |
img_x = flash_attention(q, k_img, v_img) | |
# compute attention | |
x = flash_attention(q, k, v) | |
# output | |
x = x.flatten(2) | |
img_x = img_x.flatten(2) | |
x = x + img_x | |
x = self.o(x) | |
return x | |
WAN_CROSSATTENTION_CLASSES = { | |
"t2v_cross_attn": WanT2VCrossAttention, | |
"i2v_cross_attn": WanI2VCrossAttention, | |
} | |
def mul_add(x, y, z): | |
return x.float() + y.float() * z.float() | |
def mul_add_add(x, y, z): | |
return x.float() * (1 + y) + z | |
mul_add_compile = torch.compile(mul_add, dynamic=True, disable=DISABLE_COMPILE) | |
mul_add_add_compile = torch.compile(mul_add_add, dynamic=True, disable=DISABLE_COMPILE) | |
class WanAttentionBlock(nn.Module): | |
def __init__( | |
self, | |
cross_attn_type, | |
dim, | |
ffn_dim, | |
num_heads, | |
window_size=(-1, -1), | |
qk_norm=True, | |
cross_attn_norm=False, | |
eps=1e-6, | |
): | |
super().__init__() | |
self.dim = dim | |
self.ffn_dim = ffn_dim | |
self.num_heads = num_heads | |
self.window_size = window_size | |
self.qk_norm = qk_norm | |
self.cross_attn_norm = cross_attn_norm | |
self.eps = eps | |
# layers | |
self.norm1 = WanLayerNorm(dim, eps) | |
self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm, eps) | |
self.norm3 = WanLayerNorm(dim, eps, elementwise_affine=True) if cross_attn_norm else nn.Identity() | |
self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim, num_heads, (-1, -1), qk_norm, eps) | |
self.norm2 = WanLayerNorm(dim, eps) | |
self.ffn = nn.Sequential(nn.Linear(dim, ffn_dim), nn.GELU(approximate="tanh"), nn.Linear(ffn_dim, dim)) | |
# modulation | |
self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5) | |
def set_ar_attention(self): | |
self.self_attn.set_ar_attention() | |
def forward( | |
self, | |
x, | |
e, | |
grid_sizes, | |
freqs, | |
context, | |
block_mask, | |
): | |
r""" | |
Args: | |
x(Tensor): Shape [B, L, C] | |
e(Tensor): Shape [B, 6, C] | |
seq_lens(Tensor): Shape [B], length of each sequence in batch | |
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W) | |
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] | |
""" | |
if e.dim() == 3: | |
modulation = self.modulation # 1, 6, dim | |
with amp.autocast("cuda", dtype=torch.float32): | |
e = (modulation + e).chunk(6, dim=1) | |
elif e.dim() == 4: | |
modulation = self.modulation.unsqueeze(2) # 1, 6, 1, dim | |
with amp.autocast("cuda", dtype=torch.float32): | |
e = (modulation + e).chunk(6, dim=1) | |
e = [ei.squeeze(1) for ei in e] | |
# self-attention | |
out = mul_add_add_compile(self.norm1(x), e[1], e[0]) | |
y = self.self_attn(out, grid_sizes, freqs, block_mask) | |
with amp.autocast("cuda", dtype=torch.float32): | |
x = mul_add_compile(x, y, e[2]) | |
# cross-attention & ffn function | |
def cross_attn_ffn(x, context, e): | |
dtype = context.dtype | |
x = x + self.cross_attn(self.norm3(x.to(dtype)), context) | |
y = self.ffn(mul_add_add_compile(self.norm2(x), e[4], e[3]).to(dtype)) | |
with amp.autocast("cuda", dtype=torch.float32): | |
x = mul_add_compile(x, y, e[5]) | |
return x | |
x = cross_attn_ffn(x, context, e) | |
return x.to(torch.bfloat16) | |
class Head(nn.Module): | |
def __init__(self, dim, out_dim, patch_size, eps=1e-6): | |
super().__init__() | |
self.dim = dim | |
self.out_dim = out_dim | |
self.patch_size = patch_size | |
self.eps = eps | |
# layers | |
out_dim = math.prod(patch_size) * out_dim | |
self.norm = WanLayerNorm(dim, eps) | |
self.head = nn.Linear(dim, out_dim) | |
# modulation | |
self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5) | |
def forward(self, x, e): | |
r""" | |
Args: | |
x(Tensor): Shape [B, L1, C] | |
e(Tensor): Shape [B, C] | |
""" | |
with amp.autocast("cuda", dtype=torch.float32): | |
if e.dim() == 2: | |
modulation = self.modulation # 1, 2, dim | |
e = (modulation + e.unsqueeze(1)).chunk(2, dim=1) | |
elif e.dim() == 3: | |
modulation = self.modulation.unsqueeze(2) # 1, 2, seq, dim | |
e = (modulation + e.unsqueeze(1)).chunk(2, dim=1) | |
e = [ei.squeeze(1) for ei in e] | |
x = self.head(self.norm(x) * (1 + e[1]) + e[0]) | |
return x | |
class MLPProj(torch.nn.Module): | |
def __init__(self, in_dim, out_dim): | |
super().__init__() | |
self.proj = torch.nn.Sequential( | |
torch.nn.LayerNorm(in_dim), | |
torch.nn.Linear(in_dim, in_dim), | |
torch.nn.GELU(), | |
torch.nn.Linear(in_dim, out_dim), | |
torch.nn.LayerNorm(out_dim), | |
) | |
def forward(self, image_embeds): | |
clip_extra_context_tokens = self.proj(image_embeds) | |
return clip_extra_context_tokens | |
class WanModel(ModelMixin, ConfigMixin, PeftAdapterMixin): | |
r""" | |
Wan diffusion backbone supporting both text-to-video and image-to-video. | |
""" | |
ignore_for_config = ["patch_size", "cross_attn_norm", "qk_norm", "text_dim", "window_size"] | |
_no_split_modules = ["WanAttentionBlock"] | |
_supports_gradient_checkpointing = True | |
def __init__( | |
self, | |
model_type="t2v", | |
patch_size=(1, 2, 2), | |
text_len=512, | |
in_dim=16, | |
dim=2048, | |
ffn_dim=8192, | |
freq_dim=256, | |
text_dim=4096, | |
out_dim=16, | |
num_heads=16, | |
num_layers=32, | |
window_size=(-1, -1), | |
qk_norm=True, | |
cross_attn_norm=True, | |
inject_sample_info=False, | |
eps=1e-6, | |
): | |
r""" | |
Initialize the diffusion model backbone. | |
Args: | |
model_type (`str`, *optional*, defaults to 't2v'): | |
Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video) | |
patch_size (`tuple`, *optional*, defaults to (1, 2, 2)): | |
3D patch dimensions for video embedding (t_patch, h_patch, w_patch) | |
text_len (`int`, *optional*, defaults to 512): | |
Fixed length for text embeddings | |
in_dim (`int`, *optional*, defaults to 16): | |
Input video channels (C_in) | |
dim (`int`, *optional*, defaults to 2048): | |
Hidden dimension of the transformer | |
ffn_dim (`int`, *optional*, defaults to 8192): | |
Intermediate dimension in feed-forward network | |
freq_dim (`int`, *optional*, defaults to 256): | |
Dimension for sinusoidal time embeddings | |
text_dim (`int`, *optional*, defaults to 4096): | |
Input dimension for text embeddings | |
out_dim (`int`, *optional*, defaults to 16): | |
Output video channels (C_out) | |
num_heads (`int`, *optional*, defaults to 16): | |
Number of attention heads | |
num_layers (`int`, *optional*, defaults to 32): | |
Number of transformer blocks | |
window_size (`tuple`, *optional*, defaults to (-1, -1)): | |
Window size for local attention (-1 indicates global attention) | |
qk_norm (`bool`, *optional*, defaults to True): | |
Enable query/key normalization | |
cross_attn_norm (`bool`, *optional*, defaults to False): | |
Enable cross-attention normalization | |
eps (`float`, *optional*, defaults to 1e-6): | |
Epsilon value for normalization layers | |
""" | |
super().__init__() | |
assert model_type in ["t2v", "i2v"] | |
self.model_type = model_type | |
self.patch_size = patch_size | |
self.text_len = text_len | |
self.in_dim = in_dim | |
self.dim = dim | |
self.ffn_dim = ffn_dim | |
self.freq_dim = freq_dim | |
self.text_dim = text_dim | |
self.out_dim = out_dim | |
self.num_heads = num_heads | |
self.num_layers = num_layers | |
self.window_size = window_size | |
self.qk_norm = qk_norm | |
self.cross_attn_norm = cross_attn_norm | |
self.eps = eps | |
self.num_frame_per_block = 1 | |
self.flag_causal_attention = False | |
self.block_mask = None | |
self.enable_teacache = False | |
# embeddings | |
self.patch_embedding = nn.Conv3d(in_dim, dim, kernel_size=patch_size, stride=patch_size) | |
self.text_embedding = nn.Sequential(nn.Linear(text_dim, dim), nn.GELU(approximate="tanh"), nn.Linear(dim, dim)) | |
self.time_embedding = nn.Sequential(nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim)) | |
self.time_projection = nn.Sequential(nn.SiLU(), nn.Linear(dim, dim * 6)) | |
if inject_sample_info: | |
self.fps_embedding = nn.Embedding(2, dim) | |
self.fps_projection = nn.Sequential(nn.Linear(dim, dim), nn.SiLU(), nn.Linear(dim, dim * 6)) | |
# blocks | |
cross_attn_type = "t2v_cross_attn" if model_type == "t2v" else "i2v_cross_attn" | |
self.blocks = nn.ModuleList( | |
[ | |
WanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps) | |
for _ in range(num_layers) | |
] | |
) | |
# head | |
self.head = Head(dim, out_dim, patch_size, eps) | |
# buffers (don't use register_buffer otherwise dtype will be changed in to()) | |
assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0 | |
d = dim // num_heads | |
self.freqs = torch.cat( | |
[rope_params(1024, d - 4 * (d // 6)), rope_params(1024, 2 * (d // 6)), rope_params(1024, 2 * (d // 6))], | |
dim=1, | |
) | |
if model_type == "i2v": | |
self.img_emb = MLPProj(1280, dim) | |
self.gradient_checkpointing = False | |
self.cpu_offloading = False | |
self.inject_sample_info = inject_sample_info | |
# initialize weights | |
self.init_weights() | |
def _set_gradient_checkpointing(self, module, value=False): | |
self.gradient_checkpointing = value | |
def zero_init_i2v_cross_attn(self): | |
print("zero init i2v cross attn") | |
for i in range(self.num_layers): | |
self.blocks[i].cross_attn.v_img.weight.data.zero_() | |
self.blocks[i].cross_attn.v_img.bias.data.zero_() | |
def _prepare_blockwise_causal_attn_mask( | |
device: torch.device | str, num_frames: int = 21, frame_seqlen: int = 1560, num_frame_per_block=1 | |
) -> BlockMask: | |
""" | |
we will divide the token sequence into the following format | |
[1 latent frame] [1 latent frame] ... [1 latent frame] | |
We use flexattention to construct the attention mask | |
""" | |
total_length = num_frames * frame_seqlen | |
# we do right padding to get to a multiple of 128 | |
padded_length = math.ceil(total_length / 128) * 128 - total_length | |
ends = torch.zeros(total_length + padded_length, device=device, dtype=torch.long) | |
# Block-wise causal mask will attend to all elements that are before the end of the current chunk | |
frame_indices = torch.arange(start=0, end=total_length, step=frame_seqlen * num_frame_per_block, device=device) | |
for tmp in frame_indices: | |
ends[tmp : tmp + frame_seqlen * num_frame_per_block] = tmp + frame_seqlen * num_frame_per_block | |
def attention_mask(b, h, q_idx, kv_idx): | |
return (kv_idx < ends[q_idx]) | (q_idx == kv_idx) | |
# return ((kv_idx < total_length) & (q_idx < total_length)) | (q_idx == kv_idx) # bidirectional mask | |
block_mask = create_block_mask( | |
attention_mask, | |
B=None, | |
H=None, | |
Q_LEN=total_length + padded_length, | |
KV_LEN=total_length + padded_length, | |
_compile=False, | |
device=device, | |
) | |
return block_mask | |
def initialize_teacache(self, enable_teacache=True, num_steps=25, teacache_thresh=0.15, use_ret_steps=False, ckpt_dir=''): | |
self.enable_teacache = enable_teacache | |
print('using teacache') | |
self.cnt = 0 | |
self.num_steps = num_steps | |
self.teacache_thresh = teacache_thresh | |
self.accumulated_rel_l1_distance_even = 0 | |
self.accumulated_rel_l1_distance_odd = 0 | |
self.previous_e0_even = None | |
self.previous_e0_odd = None | |
self.previous_residual_even = None | |
self.previous_residual_odd = None | |
self.use_ref_steps = use_ret_steps | |
if "I2V" in ckpt_dir: | |
if use_ret_steps: | |
if '540P' in ckpt_dir: | |
self.coefficients = [ 2.57151496e+05, -3.54229917e+04, 1.40286849e+03, -1.35890334e+01, 1.32517977e-01] | |
if '720P' in ckpt_dir: | |
self.coefficients = [ 8.10705460e+03, 2.13393892e+03, -3.72934672e+02, 1.66203073e+01, -4.17769401e-02] | |
self.ret_steps = 5*2 | |
self.cutoff_steps = num_steps*2 | |
else: | |
if '540P' in ckpt_dir: | |
self.coefficients = [-3.02331670e+02, 2.23948934e+02, -5.25463970e+01, 5.87348440e+00, -2.01973289e-01] | |
if '720P' in ckpt_dir: | |
self.coefficients = [-114.36346466, 65.26524496, -18.82220707, 4.91518089, -0.23412683] | |
self.ret_steps = 1*2 | |
self.cutoff_steps = num_steps*2 - 2 | |
else: | |
if use_ret_steps: | |
if '1.3B' in ckpt_dir: | |
self.coefficients = [-5.21862437e+04, 9.23041404e+03, -5.28275948e+02, 1.36987616e+01, -4.99875664e-02] | |
if '14B' in ckpt_dir: | |
self.coefficients = [-3.03318725e+05, 4.90537029e+04, -2.65530556e+03, 5.87365115e+01, -3.15583525e-01] | |
self.ret_steps = 5*2 | |
self.cutoff_steps = num_steps*2 | |
else: | |
if '1.3B' in ckpt_dir: | |
self.coefficients = [2.39676752e+03, -1.31110545e+03, 2.01331979e+02, -8.29855975e+00, 1.37887774e-01] | |
if '14B' in ckpt_dir: | |
self.coefficients = [-5784.54975374, 5449.50911966, -1811.16591783, 256.27178429, -13.02252404] | |
self.ret_steps = 1*2 | |
self.cutoff_steps = num_steps*2 - 2 | |
def forward(self, x, t, context, clip_fea=None, y=None, fps=None): | |
r""" | |
Forward pass through the diffusion model | |
Args: | |
x (List[Tensor]): | |
List of input video tensors, each with shape [C_in, F, H, W] | |
t (Tensor): | |
Diffusion timesteps tensor of shape [B] | |
context (List[Tensor]): | |
List of text embeddings each with shape [L, C] | |
seq_len (`int`): | |
Maximum sequence length for positional encoding | |
clip_fea (Tensor, *optional*): | |
CLIP image features for image-to-video mode | |
y (List[Tensor], *optional*): | |
Conditional video inputs for image-to-video mode, same shape as x | |
Returns: | |
List[Tensor]: | |
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8] | |
""" | |
if self.model_type == "i2v": | |
assert clip_fea is not None and y is not None | |
# params | |
device = self.patch_embedding.weight.device | |
if self.freqs.device != device: | |
self.freqs = self.freqs.to(device) | |
if y is not None: | |
x = torch.cat([x, y], dim=1) | |
# embeddings | |
x = self.patch_embedding(x) | |
grid_sizes = torch.tensor(x.shape[2:], dtype=torch.long) | |
x = x.flatten(2).transpose(1, 2) | |
if self.flag_causal_attention: | |
frame_num = grid_sizes[0] | |
height = grid_sizes[1] | |
width = grid_sizes[2] | |
block_num = frame_num // self.num_frame_per_block | |
range_tensor = torch.arange(block_num).view(-1, 1) | |
range_tensor = range_tensor.repeat(1, self.num_frame_per_block).flatten() | |
casual_mask = range_tensor.unsqueeze(0) <= range_tensor.unsqueeze(1) # f, f | |
casual_mask = casual_mask.view(frame_num, 1, 1, frame_num, 1, 1).to(x.device) | |
casual_mask = casual_mask.repeat(1, height, width, 1, height, width) | |
casual_mask = casual_mask.reshape(frame_num * height * width, frame_num * height * width) | |
self.block_mask = casual_mask.unsqueeze(0).unsqueeze(0) | |
# time embeddings | |
with amp.autocast("cuda", dtype=torch.float32): | |
if t.dim() == 2: | |
b, f = t.shape | |
_flag_df = True | |
else: | |
_flag_df = False | |
e = self.time_embedding( | |
sinusoidal_embedding_1d(self.freq_dim, t.flatten()).to(self.patch_embedding.weight.dtype) | |
) # b, dim | |
e0 = self.time_projection(e).unflatten(1, (6, self.dim)) # b, 6, dim | |
if self.inject_sample_info: | |
fps = torch.tensor(fps, dtype=torch.long, device=device) | |
fps_emb = self.fps_embedding(fps).float() | |
if _flag_df: | |
e0 = e0 + self.fps_projection(fps_emb).unflatten(1, (6, self.dim)).repeat(t.shape[1], 1, 1) | |
else: | |
e0 = e0 + self.fps_projection(fps_emb).unflatten(1, (6, self.dim)) | |
if _flag_df: | |
e = e.view(b, f, 1, 1, self.dim) | |
e0 = e0.view(b, f, 1, 1, 6, self.dim) | |
e = e.repeat(1, 1, grid_sizes[1], grid_sizes[2], 1).flatten(1, 3) | |
e0 = e0.repeat(1, 1, grid_sizes[1], grid_sizes[2], 1, 1).flatten(1, 3) | |
e0 = e0.transpose(1, 2).contiguous() | |
assert e.dtype == torch.float32 and e0.dtype == torch.float32 | |
# context | |
context = self.text_embedding(context) | |
if clip_fea is not None: | |
context_clip = self.img_emb(clip_fea) # bs x 257 x dim | |
context = torch.concat([context_clip, context], dim=1) | |
# arguments | |
kwargs = dict(e=e0, grid_sizes=grid_sizes, freqs=self.freqs, context=context, block_mask=self.block_mask) | |
if self.enable_teacache: | |
modulated_inp = e0 if self.use_ref_steps else e | |
# teacache | |
if self.cnt%2==0: # even -> conditon | |
self.is_even = True | |
if self.cnt < self.ret_steps or self.cnt >= self.cutoff_steps: | |
should_calc_even = True | |
self.accumulated_rel_l1_distance_even = 0 | |
else: | |
rescale_func = np.poly1d(self.coefficients) | |
self.accumulated_rel_l1_distance_even += rescale_func(((modulated_inp-self.previous_e0_even).abs().mean() / self.previous_e0_even.abs().mean()).cpu().item()) | |
if self.accumulated_rel_l1_distance_even < self.teacache_thresh: | |
should_calc_even = False | |
else: | |
should_calc_even = True | |
self.accumulated_rel_l1_distance_even = 0 | |
self.previous_e0_even = modulated_inp.clone() | |
else: # odd -> unconditon | |
self.is_even = False | |
if self.cnt < self.ret_steps or self.cnt >= self.cutoff_steps: | |
should_calc_odd = True | |
self.accumulated_rel_l1_distance_odd = 0 | |
else: | |
rescale_func = np.poly1d(self.coefficients) | |
self.accumulated_rel_l1_distance_odd += rescale_func(((modulated_inp-self.previous_e0_odd).abs().mean() / self.previous_e0_odd.abs().mean()).cpu().item()) | |
if self.accumulated_rel_l1_distance_odd < self.teacache_thresh: | |
should_calc_odd = False | |
else: | |
should_calc_odd = True | |
self.accumulated_rel_l1_distance_odd = 0 | |
self.previous_e0_odd = modulated_inp.clone() | |
if self.enable_teacache: | |
if self.is_even: | |
if not should_calc_even: | |
x += self.previous_residual_even | |
else: | |
ori_x = x.clone() | |
for block in self.blocks: | |
x = block(x, **kwargs) | |
self.previous_residual_even = x - ori_x | |
else: | |
if not should_calc_odd: | |
x += self.previous_residual_odd | |
else: | |
ori_x = x.clone() | |
for block in self.blocks: | |
x = block(x, **kwargs) | |
self.previous_residual_odd = x - ori_x | |
self.cnt += 1 | |
if self.cnt >= self.num_steps: | |
self.cnt = 0 | |
else: | |
for block in self.blocks: | |
x = block(x, **kwargs) | |
x = self.head(x, e) | |
# unpatchify | |
x = self.unpatchify(x, grid_sizes) | |
return x.float() | |
def unpatchify(self, x, grid_sizes): | |
r""" | |
Reconstruct video tensors from patch embeddings. | |
Args: | |
x (List[Tensor]): | |
List of patchified features, each with shape [L, C_out * prod(patch_size)] | |
grid_sizes (Tensor): | |
Original spatial-temporal grid dimensions before patching, | |
shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches) | |
Returns: | |
List[Tensor]: | |
Reconstructed video tensors with shape [C_out, F, H / 8, W / 8] | |
""" | |
c = self.out_dim | |
bs = x.shape[0] | |
x = x.view(bs, *grid_sizes, *self.patch_size, c) | |
x = torch.einsum("bfhwpqrc->bcfphqwr", x) | |
x = x.reshape(bs, c, *[i * j for i, j in zip(grid_sizes, self.patch_size)]) | |
return x | |
def set_ar_attention(self, causal_block_size): | |
self.num_frame_per_block = causal_block_size | |
self.flag_causal_attention = True | |
for block in self.blocks: | |
block.set_ar_attention() | |
def init_weights(self): | |
r""" | |
Initialize model parameters using Xavier initialization. | |
""" | |
# basic init | |
for m in self.modules(): | |
if isinstance(m, nn.Linear): | |
nn.init.xavier_uniform_(m.weight) | |
if m.bias is not None: | |
nn.init.zeros_(m.bias) | |
# init embeddings | |
nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1)) | |
for m in self.text_embedding.modules(): | |
if isinstance(m, nn.Linear): | |
nn.init.normal_(m.weight, std=0.02) | |
for m in self.time_embedding.modules(): | |
if isinstance(m, nn.Linear): | |
nn.init.normal_(m.weight, std=0.02) | |
if self.inject_sample_info: | |
nn.init.normal_(self.fps_embedding.weight, std=0.02) | |
for m in self.fps_projection.modules(): | |
if isinstance(m, nn.Linear): | |
nn.init.normal_(m.weight, std=0.02) | |
nn.init.zeros_(self.fps_projection[-1].weight) | |
nn.init.zeros_(self.fps_projection[-1].bias) | |
# init output layer | |
nn.init.zeros_(self.head.head.weight) | |