fffiloni's picture
Migrated from GitHub
fc0a183 verified
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import math
import numpy as np
import torch
import torch.amp as amp
import torch.nn as nn
from diffusers.configuration_utils import ConfigMixin
from diffusers.configuration_utils import register_to_config
from diffusers.loaders import PeftAdapterMixin
from diffusers.models.modeling_utils import ModelMixin
from torch.backends.cuda import sdp_kernel
from torch.nn.attention.flex_attention import BlockMask
from torch.nn.attention.flex_attention import create_block_mask
from torch.nn.attention.flex_attention import flex_attention
from .attention import flash_attention
flex_attention = torch.compile(flex_attention, dynamic=False, mode="max-autotune")
DISABLE_COMPILE = False # get os env
__all__ = ["WanModel"]
def sinusoidal_embedding_1d(dim, position):
# preprocess
assert dim % 2 == 0
half = dim // 2
position = position.type(torch.float64)
# calculation
sinusoid = torch.outer(position, torch.pow(10000, -torch.arange(half).to(position).div(half)))
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1)
return x
@amp.autocast("cuda", enabled=False)
def rope_params(max_seq_len, dim, theta=10000):
assert dim % 2 == 0
freqs = torch.outer(
torch.arange(max_seq_len), 1.0 / torch.pow(theta, torch.arange(0, dim, 2).to(torch.float32).div(dim))
)
freqs = torch.polar(torch.ones_like(freqs), freqs)
return freqs
@amp.autocast("cuda", enabled=False)
def rope_apply(x, grid_sizes, freqs):
n, c = x.size(2), x.size(3) // 2
bs = x.size(0)
# split freqs
freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)
# loop over samples
f, h, w = grid_sizes.tolist()
seq_len = f * h * w
# precompute multipliers
x = torch.view_as_complex(x.to(torch.float32).reshape(bs, seq_len, n, -1, 2))
freqs_i = torch.cat(
[
freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1),
],
dim=-1,
).reshape(seq_len, 1, -1)
# apply rotary embedding
x = torch.view_as_real(x * freqs_i).flatten(3)
return x
@torch.compile(dynamic=True, disable=DISABLE_COMPILE)
def fast_rms_norm(x, weight, eps):
x = x.float()
x = x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + eps)
x = x.type_as(x) * weight
return x
class WanRMSNorm(nn.Module):
def __init__(self, dim, eps=1e-5):
super().__init__()
self.dim = dim
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def forward(self, x):
r"""
Args:
x(Tensor): Shape [B, L, C]
"""
return fast_rms_norm(x, self.weight, self.eps)
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps)
class WanLayerNorm(nn.LayerNorm):
def __init__(self, dim, eps=1e-6, elementwise_affine=False):
super().__init__(dim, elementwise_affine=elementwise_affine, eps=eps)
def forward(self, x):
r"""
Args:
x(Tensor): Shape [B, L, C]
"""
return super().forward(x)
class WanSelfAttention(nn.Module):
def __init__(self, dim, num_heads, window_size=(-1, -1), qk_norm=True, eps=1e-6):
assert dim % num_heads == 0
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.window_size = window_size
self.qk_norm = qk_norm
self.eps = eps
# layers
self.q = nn.Linear(dim, dim)
self.k = nn.Linear(dim, dim)
self.v = nn.Linear(dim, dim)
self.o = nn.Linear(dim, dim)
self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
self._flag_ar_attention = False
def set_ar_attention(self):
self._flag_ar_attention = True
def forward(self, x, grid_sizes, freqs, block_mask):
r"""
Args:
x(Tensor): Shape [B, L, num_heads, C / num_heads]
seq_lens(Tensor): Shape [B]
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
"""
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
# query, key, value function
def qkv_fn(x):
q = self.norm_q(self.q(x)).view(b, s, n, d)
k = self.norm_k(self.k(x)).view(b, s, n, d)
v = self.v(x).view(b, s, n, d)
return q, k, v
x = x.to(self.q.weight.dtype)
q, k, v = qkv_fn(x)
if not self._flag_ar_attention:
q = rope_apply(q, grid_sizes, freqs)
k = rope_apply(k, grid_sizes, freqs)
x = flash_attention(q=q, k=k, v=v, window_size=self.window_size)
else:
q = rope_apply(q, grid_sizes, freqs)
k = rope_apply(k, grid_sizes, freqs)
q = q.to(torch.bfloat16)
k = k.to(torch.bfloat16)
v = v.to(torch.bfloat16)
with sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
x = (
torch.nn.functional.scaled_dot_product_attention(
q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), attn_mask=block_mask
)
.transpose(1, 2)
.contiguous()
)
# output
x = x.flatten(2)
x = self.o(x)
return x
class WanT2VCrossAttention(WanSelfAttention):
def forward(self, x, context):
r"""
Args:
x(Tensor): Shape [B, L1, C]
context(Tensor): Shape [B, L2, C]
context_lens(Tensor): Shape [B]
"""
b, n, d = x.size(0), self.num_heads, self.head_dim
# compute query, key, value
q = self.norm_q(self.q(x)).view(b, -1, n, d)
k = self.norm_k(self.k(context)).view(b, -1, n, d)
v = self.v(context).view(b, -1, n, d)
# compute attention
x = flash_attention(q, k, v)
# output
x = x.flatten(2)
x = self.o(x)
return x
class WanI2VCrossAttention(WanSelfAttention):
def __init__(self, dim, num_heads, window_size=(-1, -1), qk_norm=True, eps=1e-6):
super().__init__(dim, num_heads, window_size, qk_norm, eps)
self.k_img = nn.Linear(dim, dim)
self.v_img = nn.Linear(dim, dim)
# self.alpha = nn.Parameter(torch.zeros((1, )))
self.norm_k_img = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
def forward(self, x, context):
r"""
Args:
x(Tensor): Shape [B, L1, C]
context(Tensor): Shape [B, L2, C]
context_lens(Tensor): Shape [B]
"""
context_img = context[:, :257]
context = context[:, 257:]
b, n, d = x.size(0), self.num_heads, self.head_dim
# compute query, key, value
q = self.norm_q(self.q(x)).view(b, -1, n, d)
k = self.norm_k(self.k(context)).view(b, -1, n, d)
v = self.v(context).view(b, -1, n, d)
k_img = self.norm_k_img(self.k_img(context_img)).view(b, -1, n, d)
v_img = self.v_img(context_img).view(b, -1, n, d)
img_x = flash_attention(q, k_img, v_img)
# compute attention
x = flash_attention(q, k, v)
# output
x = x.flatten(2)
img_x = img_x.flatten(2)
x = x + img_x
x = self.o(x)
return x
WAN_CROSSATTENTION_CLASSES = {
"t2v_cross_attn": WanT2VCrossAttention,
"i2v_cross_attn": WanI2VCrossAttention,
}
def mul_add(x, y, z):
return x.float() + y.float() * z.float()
def mul_add_add(x, y, z):
return x.float() * (1 + y) + z
mul_add_compile = torch.compile(mul_add, dynamic=True, disable=DISABLE_COMPILE)
mul_add_add_compile = torch.compile(mul_add_add, dynamic=True, disable=DISABLE_COMPILE)
class WanAttentionBlock(nn.Module):
def __init__(
self,
cross_attn_type,
dim,
ffn_dim,
num_heads,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=False,
eps=1e-6,
):
super().__init__()
self.dim = dim
self.ffn_dim = ffn_dim
self.num_heads = num_heads
self.window_size = window_size
self.qk_norm = qk_norm
self.cross_attn_norm = cross_attn_norm
self.eps = eps
# layers
self.norm1 = WanLayerNorm(dim, eps)
self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm, eps)
self.norm3 = WanLayerNorm(dim, eps, elementwise_affine=True) if cross_attn_norm else nn.Identity()
self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim, num_heads, (-1, -1), qk_norm, eps)
self.norm2 = WanLayerNorm(dim, eps)
self.ffn = nn.Sequential(nn.Linear(dim, ffn_dim), nn.GELU(approximate="tanh"), nn.Linear(ffn_dim, dim))
# modulation
self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)
def set_ar_attention(self):
self.self_attn.set_ar_attention()
def forward(
self,
x,
e,
grid_sizes,
freqs,
context,
block_mask,
):
r"""
Args:
x(Tensor): Shape [B, L, C]
e(Tensor): Shape [B, 6, C]
seq_lens(Tensor): Shape [B], length of each sequence in batch
grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
"""
if e.dim() == 3:
modulation = self.modulation # 1, 6, dim
with amp.autocast("cuda", dtype=torch.float32):
e = (modulation + e).chunk(6, dim=1)
elif e.dim() == 4:
modulation = self.modulation.unsqueeze(2) # 1, 6, 1, dim
with amp.autocast("cuda", dtype=torch.float32):
e = (modulation + e).chunk(6, dim=1)
e = [ei.squeeze(1) for ei in e]
# self-attention
out = mul_add_add_compile(self.norm1(x), e[1], e[0])
y = self.self_attn(out, grid_sizes, freqs, block_mask)
with amp.autocast("cuda", dtype=torch.float32):
x = mul_add_compile(x, y, e[2])
# cross-attention & ffn function
def cross_attn_ffn(x, context, e):
dtype = context.dtype
x = x + self.cross_attn(self.norm3(x.to(dtype)), context)
y = self.ffn(mul_add_add_compile(self.norm2(x), e[4], e[3]).to(dtype))
with amp.autocast("cuda", dtype=torch.float32):
x = mul_add_compile(x, y, e[5])
return x
x = cross_attn_ffn(x, context, e)
return x.to(torch.bfloat16)
class Head(nn.Module):
def __init__(self, dim, out_dim, patch_size, eps=1e-6):
super().__init__()
self.dim = dim
self.out_dim = out_dim
self.patch_size = patch_size
self.eps = eps
# layers
out_dim = math.prod(patch_size) * out_dim
self.norm = WanLayerNorm(dim, eps)
self.head = nn.Linear(dim, out_dim)
# modulation
self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5)
def forward(self, x, e):
r"""
Args:
x(Tensor): Shape [B, L1, C]
e(Tensor): Shape [B, C]
"""
with amp.autocast("cuda", dtype=torch.float32):
if e.dim() == 2:
modulation = self.modulation # 1, 2, dim
e = (modulation + e.unsqueeze(1)).chunk(2, dim=1)
elif e.dim() == 3:
modulation = self.modulation.unsqueeze(2) # 1, 2, seq, dim
e = (modulation + e.unsqueeze(1)).chunk(2, dim=1)
e = [ei.squeeze(1) for ei in e]
x = self.head(self.norm(x) * (1 + e[1]) + e[0])
return x
class MLPProj(torch.nn.Module):
def __init__(self, in_dim, out_dim):
super().__init__()
self.proj = torch.nn.Sequential(
torch.nn.LayerNorm(in_dim),
torch.nn.Linear(in_dim, in_dim),
torch.nn.GELU(),
torch.nn.Linear(in_dim, out_dim),
torch.nn.LayerNorm(out_dim),
)
def forward(self, image_embeds):
clip_extra_context_tokens = self.proj(image_embeds)
return clip_extra_context_tokens
class WanModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
r"""
Wan diffusion backbone supporting both text-to-video and image-to-video.
"""
ignore_for_config = ["patch_size", "cross_attn_norm", "qk_norm", "text_dim", "window_size"]
_no_split_modules = ["WanAttentionBlock"]
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
model_type="t2v",
patch_size=(1, 2, 2),
text_len=512,
in_dim=16,
dim=2048,
ffn_dim=8192,
freq_dim=256,
text_dim=4096,
out_dim=16,
num_heads=16,
num_layers=32,
window_size=(-1, -1),
qk_norm=True,
cross_attn_norm=True,
inject_sample_info=False,
eps=1e-6,
):
r"""
Initialize the diffusion model backbone.
Args:
model_type (`str`, *optional*, defaults to 't2v'):
Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video)
patch_size (`tuple`, *optional*, defaults to (1, 2, 2)):
3D patch dimensions for video embedding (t_patch, h_patch, w_patch)
text_len (`int`, *optional*, defaults to 512):
Fixed length for text embeddings
in_dim (`int`, *optional*, defaults to 16):
Input video channels (C_in)
dim (`int`, *optional*, defaults to 2048):
Hidden dimension of the transformer
ffn_dim (`int`, *optional*, defaults to 8192):
Intermediate dimension in feed-forward network
freq_dim (`int`, *optional*, defaults to 256):
Dimension for sinusoidal time embeddings
text_dim (`int`, *optional*, defaults to 4096):
Input dimension for text embeddings
out_dim (`int`, *optional*, defaults to 16):
Output video channels (C_out)
num_heads (`int`, *optional*, defaults to 16):
Number of attention heads
num_layers (`int`, *optional*, defaults to 32):
Number of transformer blocks
window_size (`tuple`, *optional*, defaults to (-1, -1)):
Window size for local attention (-1 indicates global attention)
qk_norm (`bool`, *optional*, defaults to True):
Enable query/key normalization
cross_attn_norm (`bool`, *optional*, defaults to False):
Enable cross-attention normalization
eps (`float`, *optional*, defaults to 1e-6):
Epsilon value for normalization layers
"""
super().__init__()
assert model_type in ["t2v", "i2v"]
self.model_type = model_type
self.patch_size = patch_size
self.text_len = text_len
self.in_dim = in_dim
self.dim = dim
self.ffn_dim = ffn_dim
self.freq_dim = freq_dim
self.text_dim = text_dim
self.out_dim = out_dim
self.num_heads = num_heads
self.num_layers = num_layers
self.window_size = window_size
self.qk_norm = qk_norm
self.cross_attn_norm = cross_attn_norm
self.eps = eps
self.num_frame_per_block = 1
self.flag_causal_attention = False
self.block_mask = None
self.enable_teacache = False
# embeddings
self.patch_embedding = nn.Conv3d(in_dim, dim, kernel_size=patch_size, stride=patch_size)
self.text_embedding = nn.Sequential(nn.Linear(text_dim, dim), nn.GELU(approximate="tanh"), nn.Linear(dim, dim))
self.time_embedding = nn.Sequential(nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
self.time_projection = nn.Sequential(nn.SiLU(), nn.Linear(dim, dim * 6))
if inject_sample_info:
self.fps_embedding = nn.Embedding(2, dim)
self.fps_projection = nn.Sequential(nn.Linear(dim, dim), nn.SiLU(), nn.Linear(dim, dim * 6))
# blocks
cross_attn_type = "t2v_cross_attn" if model_type == "t2v" else "i2v_cross_attn"
self.blocks = nn.ModuleList(
[
WanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps)
for _ in range(num_layers)
]
)
# head
self.head = Head(dim, out_dim, patch_size, eps)
# buffers (don't use register_buffer otherwise dtype will be changed in to())
assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0
d = dim // num_heads
self.freqs = torch.cat(
[rope_params(1024, d - 4 * (d // 6)), rope_params(1024, 2 * (d // 6)), rope_params(1024, 2 * (d // 6))],
dim=1,
)
if model_type == "i2v":
self.img_emb = MLPProj(1280, dim)
self.gradient_checkpointing = False
self.cpu_offloading = False
self.inject_sample_info = inject_sample_info
# initialize weights
self.init_weights()
def _set_gradient_checkpointing(self, module, value=False):
self.gradient_checkpointing = value
def zero_init_i2v_cross_attn(self):
print("zero init i2v cross attn")
for i in range(self.num_layers):
self.blocks[i].cross_attn.v_img.weight.data.zero_()
self.blocks[i].cross_attn.v_img.bias.data.zero_()
@staticmethod
def _prepare_blockwise_causal_attn_mask(
device: torch.device | str, num_frames: int = 21, frame_seqlen: int = 1560, num_frame_per_block=1
) -> BlockMask:
"""
we will divide the token sequence into the following format
[1 latent frame] [1 latent frame] ... [1 latent frame]
We use flexattention to construct the attention mask
"""
total_length = num_frames * frame_seqlen
# we do right padding to get to a multiple of 128
padded_length = math.ceil(total_length / 128) * 128 - total_length
ends = torch.zeros(total_length + padded_length, device=device, dtype=torch.long)
# Block-wise causal mask will attend to all elements that are before the end of the current chunk
frame_indices = torch.arange(start=0, end=total_length, step=frame_seqlen * num_frame_per_block, device=device)
for tmp in frame_indices:
ends[tmp : tmp + frame_seqlen * num_frame_per_block] = tmp + frame_seqlen * num_frame_per_block
def attention_mask(b, h, q_idx, kv_idx):
return (kv_idx < ends[q_idx]) | (q_idx == kv_idx)
# return ((kv_idx < total_length) & (q_idx < total_length)) | (q_idx == kv_idx) # bidirectional mask
block_mask = create_block_mask(
attention_mask,
B=None,
H=None,
Q_LEN=total_length + padded_length,
KV_LEN=total_length + padded_length,
_compile=False,
device=device,
)
return block_mask
def initialize_teacache(self, enable_teacache=True, num_steps=25, teacache_thresh=0.15, use_ret_steps=False, ckpt_dir=''):
self.enable_teacache = enable_teacache
print('using teacache')
self.cnt = 0
self.num_steps = num_steps
self.teacache_thresh = teacache_thresh
self.accumulated_rel_l1_distance_even = 0
self.accumulated_rel_l1_distance_odd = 0
self.previous_e0_even = None
self.previous_e0_odd = None
self.previous_residual_even = None
self.previous_residual_odd = None
self.use_ref_steps = use_ret_steps
if "I2V" in ckpt_dir:
if use_ret_steps:
if '540P' in ckpt_dir:
self.coefficients = [ 2.57151496e+05, -3.54229917e+04, 1.40286849e+03, -1.35890334e+01, 1.32517977e-01]
if '720P' in ckpt_dir:
self.coefficients = [ 8.10705460e+03, 2.13393892e+03, -3.72934672e+02, 1.66203073e+01, -4.17769401e-02]
self.ret_steps = 5*2
self.cutoff_steps = num_steps*2
else:
if '540P' in ckpt_dir:
self.coefficients = [-3.02331670e+02, 2.23948934e+02, -5.25463970e+01, 5.87348440e+00, -2.01973289e-01]
if '720P' in ckpt_dir:
self.coefficients = [-114.36346466, 65.26524496, -18.82220707, 4.91518089, -0.23412683]
self.ret_steps = 1*2
self.cutoff_steps = num_steps*2 - 2
else:
if use_ret_steps:
if '1.3B' in ckpt_dir:
self.coefficients = [-5.21862437e+04, 9.23041404e+03, -5.28275948e+02, 1.36987616e+01, -4.99875664e-02]
if '14B' in ckpt_dir:
self.coefficients = [-3.03318725e+05, 4.90537029e+04, -2.65530556e+03, 5.87365115e+01, -3.15583525e-01]
self.ret_steps = 5*2
self.cutoff_steps = num_steps*2
else:
if '1.3B' in ckpt_dir:
self.coefficients = [2.39676752e+03, -1.31110545e+03, 2.01331979e+02, -8.29855975e+00, 1.37887774e-01]
if '14B' in ckpt_dir:
self.coefficients = [-5784.54975374, 5449.50911966, -1811.16591783, 256.27178429, -13.02252404]
self.ret_steps = 1*2
self.cutoff_steps = num_steps*2 - 2
def forward(self, x, t, context, clip_fea=None, y=None, fps=None):
r"""
Forward pass through the diffusion model
Args:
x (List[Tensor]):
List of input video tensors, each with shape [C_in, F, H, W]
t (Tensor):
Diffusion timesteps tensor of shape [B]
context (List[Tensor]):
List of text embeddings each with shape [L, C]
seq_len (`int`):
Maximum sequence length for positional encoding
clip_fea (Tensor, *optional*):
CLIP image features for image-to-video mode
y (List[Tensor], *optional*):
Conditional video inputs for image-to-video mode, same shape as x
Returns:
List[Tensor]:
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
"""
if self.model_type == "i2v":
assert clip_fea is not None and y is not None
# params
device = self.patch_embedding.weight.device
if self.freqs.device != device:
self.freqs = self.freqs.to(device)
if y is not None:
x = torch.cat([x, y], dim=1)
# embeddings
x = self.patch_embedding(x)
grid_sizes = torch.tensor(x.shape[2:], dtype=torch.long)
x = x.flatten(2).transpose(1, 2)
if self.flag_causal_attention:
frame_num = grid_sizes[0]
height = grid_sizes[1]
width = grid_sizes[2]
block_num = frame_num // self.num_frame_per_block
range_tensor = torch.arange(block_num).view(-1, 1)
range_tensor = range_tensor.repeat(1, self.num_frame_per_block).flatten()
casual_mask = range_tensor.unsqueeze(0) <= range_tensor.unsqueeze(1) # f, f
casual_mask = casual_mask.view(frame_num, 1, 1, frame_num, 1, 1).to(x.device)
casual_mask = casual_mask.repeat(1, height, width, 1, height, width)
casual_mask = casual_mask.reshape(frame_num * height * width, frame_num * height * width)
self.block_mask = casual_mask.unsqueeze(0).unsqueeze(0)
# time embeddings
with amp.autocast("cuda", dtype=torch.float32):
if t.dim() == 2:
b, f = t.shape
_flag_df = True
else:
_flag_df = False
e = self.time_embedding(
sinusoidal_embedding_1d(self.freq_dim, t.flatten()).to(self.patch_embedding.weight.dtype)
) # b, dim
e0 = self.time_projection(e).unflatten(1, (6, self.dim)) # b, 6, dim
if self.inject_sample_info:
fps = torch.tensor(fps, dtype=torch.long, device=device)
fps_emb = self.fps_embedding(fps).float()
if _flag_df:
e0 = e0 + self.fps_projection(fps_emb).unflatten(1, (6, self.dim)).repeat(t.shape[1], 1, 1)
else:
e0 = e0 + self.fps_projection(fps_emb).unflatten(1, (6, self.dim))
if _flag_df:
e = e.view(b, f, 1, 1, self.dim)
e0 = e0.view(b, f, 1, 1, 6, self.dim)
e = e.repeat(1, 1, grid_sizes[1], grid_sizes[2], 1).flatten(1, 3)
e0 = e0.repeat(1, 1, grid_sizes[1], grid_sizes[2], 1, 1).flatten(1, 3)
e0 = e0.transpose(1, 2).contiguous()
assert e.dtype == torch.float32 and e0.dtype == torch.float32
# context
context = self.text_embedding(context)
if clip_fea is not None:
context_clip = self.img_emb(clip_fea) # bs x 257 x dim
context = torch.concat([context_clip, context], dim=1)
# arguments
kwargs = dict(e=e0, grid_sizes=grid_sizes, freqs=self.freqs, context=context, block_mask=self.block_mask)
if self.enable_teacache:
modulated_inp = e0 if self.use_ref_steps else e
# teacache
if self.cnt%2==0: # even -> conditon
self.is_even = True
if self.cnt < self.ret_steps or self.cnt >= self.cutoff_steps:
should_calc_even = True
self.accumulated_rel_l1_distance_even = 0
else:
rescale_func = np.poly1d(self.coefficients)
self.accumulated_rel_l1_distance_even += rescale_func(((modulated_inp-self.previous_e0_even).abs().mean() / self.previous_e0_even.abs().mean()).cpu().item())
if self.accumulated_rel_l1_distance_even < self.teacache_thresh:
should_calc_even = False
else:
should_calc_even = True
self.accumulated_rel_l1_distance_even = 0
self.previous_e0_even = modulated_inp.clone()
else: # odd -> unconditon
self.is_even = False
if self.cnt < self.ret_steps or self.cnt >= self.cutoff_steps:
should_calc_odd = True
self.accumulated_rel_l1_distance_odd = 0
else:
rescale_func = np.poly1d(self.coefficients)
self.accumulated_rel_l1_distance_odd += rescale_func(((modulated_inp-self.previous_e0_odd).abs().mean() / self.previous_e0_odd.abs().mean()).cpu().item())
if self.accumulated_rel_l1_distance_odd < self.teacache_thresh:
should_calc_odd = False
else:
should_calc_odd = True
self.accumulated_rel_l1_distance_odd = 0
self.previous_e0_odd = modulated_inp.clone()
if self.enable_teacache:
if self.is_even:
if not should_calc_even:
x += self.previous_residual_even
else:
ori_x = x.clone()
for block in self.blocks:
x = block(x, **kwargs)
self.previous_residual_even = x - ori_x
else:
if not should_calc_odd:
x += self.previous_residual_odd
else:
ori_x = x.clone()
for block in self.blocks:
x = block(x, **kwargs)
self.previous_residual_odd = x - ori_x
self.cnt += 1
if self.cnt >= self.num_steps:
self.cnt = 0
else:
for block in self.blocks:
x = block(x, **kwargs)
x = self.head(x, e)
# unpatchify
x = self.unpatchify(x, grid_sizes)
return x.float()
def unpatchify(self, x, grid_sizes):
r"""
Reconstruct video tensors from patch embeddings.
Args:
x (List[Tensor]):
List of patchified features, each with shape [L, C_out * prod(patch_size)]
grid_sizes (Tensor):
Original spatial-temporal grid dimensions before patching,
shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches)
Returns:
List[Tensor]:
Reconstructed video tensors with shape [C_out, F, H / 8, W / 8]
"""
c = self.out_dim
bs = x.shape[0]
x = x.view(bs, *grid_sizes, *self.patch_size, c)
x = torch.einsum("bfhwpqrc->bcfphqwr", x)
x = x.reshape(bs, c, *[i * j for i, j in zip(grid_sizes, self.patch_size)])
return x
def set_ar_attention(self, causal_block_size):
self.num_frame_per_block = causal_block_size
self.flag_causal_attention = True
for block in self.blocks:
block.set_ar_attention()
def init_weights(self):
r"""
Initialize model parameters using Xavier initialization.
"""
# basic init
for m in self.modules():
if isinstance(m, nn.Linear):
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
nn.init.zeros_(m.bias)
# init embeddings
nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1))
for m in self.text_embedding.modules():
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight, std=0.02)
for m in self.time_embedding.modules():
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight, std=0.02)
if self.inject_sample_info:
nn.init.normal_(self.fps_embedding.weight, std=0.02)
for m in self.fps_projection.modules():
if isinstance(m, nn.Linear):
nn.init.normal_(m.weight, std=0.02)
nn.init.zeros_(self.fps_projection[-1].weight)
nn.init.zeros_(self.fps_projection[-1].bias)
# init output layer
nn.init.zeros_(self.head.head.weight)