File size: 30,924 Bytes
fc0a183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import math
import numpy as np
import torch
import torch.amp as amp
import torch.nn as nn
from diffusers.configuration_utils import ConfigMixin
from diffusers.configuration_utils import register_to_config
from diffusers.loaders import PeftAdapterMixin
from diffusers.models.modeling_utils import ModelMixin
from torch.backends.cuda import sdp_kernel
from torch.nn.attention.flex_attention import BlockMask
from torch.nn.attention.flex_attention import create_block_mask
from torch.nn.attention.flex_attention import flex_attention

from .attention import flash_attention


flex_attention = torch.compile(flex_attention, dynamic=False, mode="max-autotune")

DISABLE_COMPILE = False  # get os env

__all__ = ["WanModel"]


def sinusoidal_embedding_1d(dim, position):
    # preprocess
    assert dim % 2 == 0
    half = dim // 2
    position = position.type(torch.float64)

    # calculation
    sinusoid = torch.outer(position, torch.pow(10000, -torch.arange(half).to(position).div(half)))
    x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1)
    return x


@amp.autocast("cuda", enabled=False)
def rope_params(max_seq_len, dim, theta=10000):
    assert dim % 2 == 0
    freqs = torch.outer(
        torch.arange(max_seq_len), 1.0 / torch.pow(theta, torch.arange(0, dim, 2).to(torch.float32).div(dim))
    )
    freqs = torch.polar(torch.ones_like(freqs), freqs)
    return freqs


@amp.autocast("cuda", enabled=False)
def rope_apply(x, grid_sizes, freqs):
    n, c = x.size(2), x.size(3) // 2
    bs = x.size(0)

    # split freqs
    freqs = freqs.split([c - 2 * (c // 3), c // 3, c // 3], dim=1)

    # loop over samples
    f, h, w = grid_sizes.tolist()
    seq_len = f * h * w

    # precompute multipliers

    x = torch.view_as_complex(x.to(torch.float32).reshape(bs, seq_len, n, -1, 2))
    freqs_i = torch.cat(
        [
            freqs[0][:f].view(f, 1, 1, -1).expand(f, h, w, -1),
            freqs[1][:h].view(1, h, 1, -1).expand(f, h, w, -1),
            freqs[2][:w].view(1, 1, w, -1).expand(f, h, w, -1),
        ],
        dim=-1,
    ).reshape(seq_len, 1, -1)

    # apply rotary embedding
    x = torch.view_as_real(x * freqs_i).flatten(3)

    return x


@torch.compile(dynamic=True, disable=DISABLE_COMPILE)
def fast_rms_norm(x, weight, eps):
    x = x.float()
    x = x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + eps)
    x = x.type_as(x) * weight
    return x


class WanRMSNorm(nn.Module):
    def __init__(self, dim, eps=1e-5):
        super().__init__()
        self.dim = dim
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def forward(self, x):
        r"""
        Args:
            x(Tensor): Shape [B, L, C]
        """
        return fast_rms_norm(x, self.weight, self.eps)

    def _norm(self, x):
        return x * torch.rsqrt(x.pow(2).mean(dim=-1, keepdim=True) + self.eps)


class WanLayerNorm(nn.LayerNorm):
    def __init__(self, dim, eps=1e-6, elementwise_affine=False):
        super().__init__(dim, elementwise_affine=elementwise_affine, eps=eps)

    def forward(self, x):
        r"""
        Args:
            x(Tensor): Shape [B, L, C]
        """
        return super().forward(x)


class WanSelfAttention(nn.Module):
    def __init__(self, dim, num_heads, window_size=(-1, -1), qk_norm=True, eps=1e-6):
        assert dim % num_heads == 0
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads
        self.head_dim = dim // num_heads
        self.window_size = window_size
        self.qk_norm = qk_norm
        self.eps = eps

        # layers
        self.q = nn.Linear(dim, dim)
        self.k = nn.Linear(dim, dim)
        self.v = nn.Linear(dim, dim)
        self.o = nn.Linear(dim, dim)
        self.norm_q = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()
        self.norm_k = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()

        self._flag_ar_attention = False

    def set_ar_attention(self):
        self._flag_ar_attention = True

    def forward(self, x, grid_sizes, freqs, block_mask):
        r"""
        Args:
            x(Tensor): Shape [B, L, num_heads, C / num_heads]
            seq_lens(Tensor): Shape [B]
            grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
            freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
        """
        b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim

        # query, key, value function
        def qkv_fn(x):
            q = self.norm_q(self.q(x)).view(b, s, n, d)
            k = self.norm_k(self.k(x)).view(b, s, n, d)
            v = self.v(x).view(b, s, n, d)
            return q, k, v

        x = x.to(self.q.weight.dtype)
        q, k, v = qkv_fn(x)

        if not self._flag_ar_attention:
            q = rope_apply(q, grid_sizes, freqs)
            k = rope_apply(k, grid_sizes, freqs)
            x = flash_attention(q=q, k=k, v=v, window_size=self.window_size)
        else:
            q = rope_apply(q, grid_sizes, freqs)
            k = rope_apply(k, grid_sizes, freqs)
            q = q.to(torch.bfloat16)
            k = k.to(torch.bfloat16)
            v = v.to(torch.bfloat16)

            with sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
                x = (
                    torch.nn.functional.scaled_dot_product_attention(
                        q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2), attn_mask=block_mask
                    )
                    .transpose(1, 2)
                    .contiguous()
                )

        # output
        x = x.flatten(2)
        x = self.o(x)
        return x


class WanT2VCrossAttention(WanSelfAttention):
    def forward(self, x, context):
        r"""
        Args:
            x(Tensor): Shape [B, L1, C]
            context(Tensor): Shape [B, L2, C]
            context_lens(Tensor): Shape [B]
        """
        b, n, d = x.size(0), self.num_heads, self.head_dim

        # compute query, key, value
        q = self.norm_q(self.q(x)).view(b, -1, n, d)
        k = self.norm_k(self.k(context)).view(b, -1, n, d)
        v = self.v(context).view(b, -1, n, d)

        # compute attention
        x = flash_attention(q, k, v)

        # output
        x = x.flatten(2)
        x = self.o(x)
        return x


class WanI2VCrossAttention(WanSelfAttention):
    def __init__(self, dim, num_heads, window_size=(-1, -1), qk_norm=True, eps=1e-6):
        super().__init__(dim, num_heads, window_size, qk_norm, eps)

        self.k_img = nn.Linear(dim, dim)
        self.v_img = nn.Linear(dim, dim)
        # self.alpha = nn.Parameter(torch.zeros((1, )))
        self.norm_k_img = WanRMSNorm(dim, eps=eps) if qk_norm else nn.Identity()

    def forward(self, x, context):
        r"""
        Args:
            x(Tensor): Shape [B, L1, C]
            context(Tensor): Shape [B, L2, C]
            context_lens(Tensor): Shape [B]
        """
        context_img = context[:, :257]
        context = context[:, 257:]
        b, n, d = x.size(0), self.num_heads, self.head_dim

        # compute query, key, value
        q = self.norm_q(self.q(x)).view(b, -1, n, d)
        k = self.norm_k(self.k(context)).view(b, -1, n, d)
        v = self.v(context).view(b, -1, n, d)
        k_img = self.norm_k_img(self.k_img(context_img)).view(b, -1, n, d)
        v_img = self.v_img(context_img).view(b, -1, n, d)
        img_x = flash_attention(q, k_img, v_img)
        # compute attention
        x = flash_attention(q, k, v)

        # output
        x = x.flatten(2)
        img_x = img_x.flatten(2)
        x = x + img_x
        x = self.o(x)
        return x


WAN_CROSSATTENTION_CLASSES = {
    "t2v_cross_attn": WanT2VCrossAttention,
    "i2v_cross_attn": WanI2VCrossAttention,
}


def mul_add(x, y, z):
    return x.float() + y.float() * z.float()


def mul_add_add(x, y, z):
    return x.float() * (1 + y) + z


mul_add_compile = torch.compile(mul_add, dynamic=True, disable=DISABLE_COMPILE)
mul_add_add_compile = torch.compile(mul_add_add, dynamic=True, disable=DISABLE_COMPILE)


class WanAttentionBlock(nn.Module):
    def __init__(
        self,
        cross_attn_type,
        dim,
        ffn_dim,
        num_heads,
        window_size=(-1, -1),
        qk_norm=True,
        cross_attn_norm=False,
        eps=1e-6,
    ):
        super().__init__()
        self.dim = dim
        self.ffn_dim = ffn_dim
        self.num_heads = num_heads
        self.window_size = window_size
        self.qk_norm = qk_norm
        self.cross_attn_norm = cross_attn_norm
        self.eps = eps

        # layers
        self.norm1 = WanLayerNorm(dim, eps)
        self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm, eps)
        self.norm3 = WanLayerNorm(dim, eps, elementwise_affine=True) if cross_attn_norm else nn.Identity()
        self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim, num_heads, (-1, -1), qk_norm, eps)
        self.norm2 = WanLayerNorm(dim, eps)
        self.ffn = nn.Sequential(nn.Linear(dim, ffn_dim), nn.GELU(approximate="tanh"), nn.Linear(ffn_dim, dim))

        # modulation
        self.modulation = nn.Parameter(torch.randn(1, 6, dim) / dim**0.5)

    def set_ar_attention(self):
        self.self_attn.set_ar_attention()

    def forward(
        self,
        x,
        e,
        grid_sizes,
        freqs,
        context,
        block_mask,
    ):
        r"""
        Args:
            x(Tensor): Shape [B, L, C]
            e(Tensor): Shape [B, 6, C]
            seq_lens(Tensor): Shape [B], length of each sequence in batch
            grid_sizes(Tensor): Shape [B, 3], the second dimension contains (F, H, W)
            freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
        """
        if e.dim() == 3:
            modulation = self.modulation  # 1, 6, dim
            with amp.autocast("cuda", dtype=torch.float32):
                e = (modulation + e).chunk(6, dim=1)
        elif e.dim() == 4:
            modulation = self.modulation.unsqueeze(2)  # 1, 6, 1, dim
            with amp.autocast("cuda", dtype=torch.float32):
                e = (modulation + e).chunk(6, dim=1)
            e = [ei.squeeze(1) for ei in e]

        # self-attention
        out = mul_add_add_compile(self.norm1(x), e[1], e[0])
        y = self.self_attn(out, grid_sizes, freqs, block_mask)
        with amp.autocast("cuda", dtype=torch.float32):
            x = mul_add_compile(x, y, e[2])

        # cross-attention & ffn function
        def cross_attn_ffn(x, context, e):
            dtype = context.dtype
            x = x + self.cross_attn(self.norm3(x.to(dtype)), context)
            y = self.ffn(mul_add_add_compile(self.norm2(x), e[4], e[3]).to(dtype))
            with amp.autocast("cuda", dtype=torch.float32):
                x = mul_add_compile(x, y, e[5])
            return x

        x = cross_attn_ffn(x, context, e)
        return x.to(torch.bfloat16)


class Head(nn.Module):
    def __init__(self, dim, out_dim, patch_size, eps=1e-6):
        super().__init__()
        self.dim = dim
        self.out_dim = out_dim
        self.patch_size = patch_size
        self.eps = eps

        # layers
        out_dim = math.prod(patch_size) * out_dim
        self.norm = WanLayerNorm(dim, eps)
        self.head = nn.Linear(dim, out_dim)

        # modulation
        self.modulation = nn.Parameter(torch.randn(1, 2, dim) / dim**0.5)

    def forward(self, x, e):
        r"""
        Args:
            x(Tensor): Shape [B, L1, C]
            e(Tensor): Shape [B, C]
        """
        with amp.autocast("cuda", dtype=torch.float32):
            if e.dim() == 2:
                modulation = self.modulation  # 1, 2, dim
                e = (modulation + e.unsqueeze(1)).chunk(2, dim=1)

            elif e.dim() == 3:
                modulation = self.modulation.unsqueeze(2)  # 1, 2, seq, dim
                e = (modulation + e.unsqueeze(1)).chunk(2, dim=1)
                e = [ei.squeeze(1) for ei in e]
            x = self.head(self.norm(x) * (1 + e[1]) + e[0])
        return x


class MLPProj(torch.nn.Module):
    def __init__(self, in_dim, out_dim):
        super().__init__()

        self.proj = torch.nn.Sequential(
            torch.nn.LayerNorm(in_dim),
            torch.nn.Linear(in_dim, in_dim),
            torch.nn.GELU(),
            torch.nn.Linear(in_dim, out_dim),
            torch.nn.LayerNorm(out_dim),
        )

    def forward(self, image_embeds):
        clip_extra_context_tokens = self.proj(image_embeds)
        return clip_extra_context_tokens


class WanModel(ModelMixin, ConfigMixin, PeftAdapterMixin):
    r"""
    Wan diffusion backbone supporting both text-to-video and image-to-video.
    """

    ignore_for_config = ["patch_size", "cross_attn_norm", "qk_norm", "text_dim", "window_size"]
    _no_split_modules = ["WanAttentionBlock"]

    _supports_gradient_checkpointing = True

    @register_to_config
    def __init__(
        self,
        model_type="t2v",
        patch_size=(1, 2, 2),
        text_len=512,
        in_dim=16,
        dim=2048,
        ffn_dim=8192,
        freq_dim=256,
        text_dim=4096,
        out_dim=16,
        num_heads=16,
        num_layers=32,
        window_size=(-1, -1),
        qk_norm=True,
        cross_attn_norm=True,
        inject_sample_info=False,
        eps=1e-6,
    ):
        r"""
        Initialize the diffusion model backbone.

        Args:
            model_type (`str`, *optional*, defaults to 't2v'):
                Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video)
            patch_size (`tuple`, *optional*, defaults to (1, 2, 2)):
                3D patch dimensions for video embedding (t_patch, h_patch, w_patch)
            text_len (`int`, *optional*, defaults to 512):
                Fixed length for text embeddings
            in_dim (`int`, *optional*, defaults to 16):
                Input video channels (C_in)
            dim (`int`, *optional*, defaults to 2048):
                Hidden dimension of the transformer
            ffn_dim (`int`, *optional*, defaults to 8192):
                Intermediate dimension in feed-forward network
            freq_dim (`int`, *optional*, defaults to 256):
                Dimension for sinusoidal time embeddings
            text_dim (`int`, *optional*, defaults to 4096):
                Input dimension for text embeddings
            out_dim (`int`, *optional*, defaults to 16):
                Output video channels (C_out)
            num_heads (`int`, *optional*, defaults to 16):
                Number of attention heads
            num_layers (`int`, *optional*, defaults to 32):
                Number of transformer blocks
            window_size (`tuple`, *optional*, defaults to (-1, -1)):
                Window size for local attention (-1 indicates global attention)
            qk_norm (`bool`, *optional*, defaults to True):
                Enable query/key normalization
            cross_attn_norm (`bool`, *optional*, defaults to False):
                Enable cross-attention normalization
            eps (`float`, *optional*, defaults to 1e-6):
                Epsilon value for normalization layers
        """

        super().__init__()

        assert model_type in ["t2v", "i2v"]
        self.model_type = model_type

        self.patch_size = patch_size
        self.text_len = text_len
        self.in_dim = in_dim
        self.dim = dim
        self.ffn_dim = ffn_dim
        self.freq_dim = freq_dim
        self.text_dim = text_dim
        self.out_dim = out_dim
        self.num_heads = num_heads
        self.num_layers = num_layers
        self.window_size = window_size
        self.qk_norm = qk_norm
        self.cross_attn_norm = cross_attn_norm
        self.eps = eps
        self.num_frame_per_block = 1
        self.flag_causal_attention = False
        self.block_mask = None
        self.enable_teacache = False

        # embeddings
        self.patch_embedding = nn.Conv3d(in_dim, dim, kernel_size=patch_size, stride=patch_size)
        self.text_embedding = nn.Sequential(nn.Linear(text_dim, dim), nn.GELU(approximate="tanh"), nn.Linear(dim, dim))

        self.time_embedding = nn.Sequential(nn.Linear(freq_dim, dim), nn.SiLU(), nn.Linear(dim, dim))
        self.time_projection = nn.Sequential(nn.SiLU(), nn.Linear(dim, dim * 6))

        if inject_sample_info:
            self.fps_embedding = nn.Embedding(2, dim)
            self.fps_projection = nn.Sequential(nn.Linear(dim, dim), nn.SiLU(), nn.Linear(dim, dim * 6))

        # blocks
        cross_attn_type = "t2v_cross_attn" if model_type == "t2v" else "i2v_cross_attn"
        self.blocks = nn.ModuleList(
            [
                WanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads, window_size, qk_norm, cross_attn_norm, eps)
                for _ in range(num_layers)
            ]
        )

        # head
        self.head = Head(dim, out_dim, patch_size, eps)

        # buffers (don't use register_buffer otherwise dtype will be changed in to())
        assert (dim % num_heads) == 0 and (dim // num_heads) % 2 == 0
        d = dim // num_heads
        self.freqs = torch.cat(
            [rope_params(1024, d - 4 * (d // 6)), rope_params(1024, 2 * (d // 6)), rope_params(1024, 2 * (d // 6))],
            dim=1,
        )

        if model_type == "i2v":
            self.img_emb = MLPProj(1280, dim)

        self.gradient_checkpointing = False

        self.cpu_offloading = False

        self.inject_sample_info = inject_sample_info
        # initialize weights
        self.init_weights()

    def _set_gradient_checkpointing(self, module, value=False):
        self.gradient_checkpointing = value

    def zero_init_i2v_cross_attn(self):
        print("zero init i2v cross attn")
        for i in range(self.num_layers):
            self.blocks[i].cross_attn.v_img.weight.data.zero_()
            self.blocks[i].cross_attn.v_img.bias.data.zero_()

    @staticmethod
    def _prepare_blockwise_causal_attn_mask(
        device: torch.device | str, num_frames: int = 21, frame_seqlen: int = 1560, num_frame_per_block=1
    ) -> BlockMask:
        """
        we will divide the token sequence into the following format
        [1 latent frame] [1 latent frame] ... [1 latent frame]
        We use flexattention to construct the attention mask
        """
        total_length = num_frames * frame_seqlen

        # we do right padding to get to a multiple of 128
        padded_length = math.ceil(total_length / 128) * 128 - total_length

        ends = torch.zeros(total_length + padded_length, device=device, dtype=torch.long)

        # Block-wise causal mask will attend to all elements that are before the end of the current chunk
        frame_indices = torch.arange(start=0, end=total_length, step=frame_seqlen * num_frame_per_block, device=device)

        for tmp in frame_indices:
            ends[tmp : tmp + frame_seqlen * num_frame_per_block] = tmp + frame_seqlen * num_frame_per_block

        def attention_mask(b, h, q_idx, kv_idx):
            return (kv_idx < ends[q_idx]) | (q_idx == kv_idx)
            # return ((kv_idx < total_length) & (q_idx < total_length))  | (q_idx == kv_idx) # bidirectional mask

        block_mask = create_block_mask(
            attention_mask,
            B=None,
            H=None,
            Q_LEN=total_length + padded_length,
            KV_LEN=total_length + padded_length,
            _compile=False,
            device=device,
        )

        return block_mask

    def initialize_teacache(self, enable_teacache=True, num_steps=25, teacache_thresh=0.15, use_ret_steps=False, ckpt_dir=''):
        self.enable_teacache = enable_teacache
        print('using teacache')
        self.cnt = 0
        self.num_steps = num_steps
        self.teacache_thresh = teacache_thresh
        self.accumulated_rel_l1_distance_even = 0
        self.accumulated_rel_l1_distance_odd = 0
        self.previous_e0_even = None
        self.previous_e0_odd = None
        self.previous_residual_even = None
        self.previous_residual_odd = None
        self.use_ref_steps = use_ret_steps
        if "I2V" in ckpt_dir:
            if use_ret_steps:
                if '540P' in ckpt_dir:
                    self.coefficients = [ 2.57151496e+05, -3.54229917e+04,  1.40286849e+03, -1.35890334e+01, 1.32517977e-01]
                if '720P' in ckpt_dir:
                    self.coefficients = [ 8.10705460e+03,  2.13393892e+03, -3.72934672e+02,  1.66203073e+01, -4.17769401e-02]
                self.ret_steps = 5*2
                self.cutoff_steps = num_steps*2
            else:
                if '540P' in ckpt_dir:
                    self.coefficients = [-3.02331670e+02,  2.23948934e+02, -5.25463970e+01,  5.87348440e+00, -2.01973289e-01]
                if '720P' in ckpt_dir:
                    self.coefficients = [-114.36346466,   65.26524496,  -18.82220707,    4.91518089,   -0.23412683]
                self.ret_steps = 1*2
                self.cutoff_steps = num_steps*2 - 2
        else:
            if use_ret_steps:
                if '1.3B' in ckpt_dir:
                    self.coefficients = [-5.21862437e+04, 9.23041404e+03, -5.28275948e+02, 1.36987616e+01, -4.99875664e-02]
                if '14B' in ckpt_dir:
                    self.coefficients = [-3.03318725e+05, 4.90537029e+04, -2.65530556e+03, 5.87365115e+01, -3.15583525e-01]
                self.ret_steps = 5*2
                self.cutoff_steps = num_steps*2
            else:
                if '1.3B' in ckpt_dir:
                    self.coefficients = [2.39676752e+03, -1.31110545e+03,  2.01331979e+02, -8.29855975e+00, 1.37887774e-01]
                if '14B' in ckpt_dir:
                    self.coefficients = [-5784.54975374,  5449.50911966, -1811.16591783,   256.27178429, -13.02252404]
                self.ret_steps = 1*2
                self.cutoff_steps = num_steps*2 - 2

    def forward(self, x, t, context, clip_fea=None, y=None, fps=None):
        r"""
        Forward pass through the diffusion model

        Args:
            x (List[Tensor]):
                List of input video tensors, each with shape [C_in, F, H, W]
            t (Tensor):
                Diffusion timesteps tensor of shape [B]
            context (List[Tensor]):
                List of text embeddings each with shape [L, C]
            seq_len (`int`):
                Maximum sequence length for positional encoding
            clip_fea (Tensor, *optional*):
                CLIP image features for image-to-video mode
            y (List[Tensor], *optional*):
                Conditional video inputs for image-to-video mode, same shape as x

        Returns:
            List[Tensor]:
                List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8]
        """
        if self.model_type == "i2v":
            assert clip_fea is not None and y is not None
        # params
        device = self.patch_embedding.weight.device
        if self.freqs.device != device:
            self.freqs = self.freqs.to(device)

        if y is not None:
            x = torch.cat([x, y], dim=1)

        # embeddings
        x = self.patch_embedding(x)
        grid_sizes = torch.tensor(x.shape[2:], dtype=torch.long)
        x = x.flatten(2).transpose(1, 2)

        if self.flag_causal_attention:
            frame_num = grid_sizes[0]
            height = grid_sizes[1]
            width = grid_sizes[2]
            block_num = frame_num // self.num_frame_per_block
            range_tensor = torch.arange(block_num).view(-1, 1)
            range_tensor = range_tensor.repeat(1, self.num_frame_per_block).flatten()
            casual_mask = range_tensor.unsqueeze(0) <= range_tensor.unsqueeze(1)  # f, f
            casual_mask = casual_mask.view(frame_num, 1, 1, frame_num, 1, 1).to(x.device)
            casual_mask = casual_mask.repeat(1, height, width, 1, height, width)
            casual_mask = casual_mask.reshape(frame_num * height * width, frame_num * height * width)
            self.block_mask = casual_mask.unsqueeze(0).unsqueeze(0)

        # time embeddings
        with amp.autocast("cuda", dtype=torch.float32):
            if t.dim() == 2:
                b, f = t.shape
                _flag_df = True
            else:
                _flag_df = False

            e = self.time_embedding(
                sinusoidal_embedding_1d(self.freq_dim, t.flatten()).to(self.patch_embedding.weight.dtype)
            )  # b, dim
            e0 = self.time_projection(e).unflatten(1, (6, self.dim))  # b, 6, dim

            if self.inject_sample_info:
                fps = torch.tensor(fps, dtype=torch.long, device=device)

                fps_emb = self.fps_embedding(fps).float()
                if _flag_df:
                    e0 = e0 + self.fps_projection(fps_emb).unflatten(1, (6, self.dim)).repeat(t.shape[1], 1, 1)
                else:
                    e0 = e0 + self.fps_projection(fps_emb).unflatten(1, (6, self.dim))

            if _flag_df:
                e = e.view(b, f, 1, 1, self.dim)
                e0 = e0.view(b, f, 1, 1, 6, self.dim)
                e = e.repeat(1, 1, grid_sizes[1], grid_sizes[2], 1).flatten(1, 3)
                e0 = e0.repeat(1, 1, grid_sizes[1], grid_sizes[2], 1, 1).flatten(1, 3)
                e0 = e0.transpose(1, 2).contiguous()

            assert e.dtype == torch.float32 and e0.dtype == torch.float32

        # context
        context = self.text_embedding(context)

        if clip_fea is not None:
            context_clip = self.img_emb(clip_fea)  # bs x 257 x dim
            context = torch.concat([context_clip, context], dim=1)

        # arguments
        kwargs = dict(e=e0, grid_sizes=grid_sizes, freqs=self.freqs, context=context, block_mask=self.block_mask)
        if self.enable_teacache:
            modulated_inp = e0 if self.use_ref_steps else e
            # teacache
            if self.cnt%2==0: # even -> conditon
                self.is_even = True
                if self.cnt < self.ret_steps or self.cnt >= self.cutoff_steps:
                    should_calc_even = True
                    self.accumulated_rel_l1_distance_even = 0
                else:
                    rescale_func = np.poly1d(self.coefficients)
                    self.accumulated_rel_l1_distance_even += rescale_func(((modulated_inp-self.previous_e0_even).abs().mean() / self.previous_e0_even.abs().mean()).cpu().item())
                    if self.accumulated_rel_l1_distance_even < self.teacache_thresh:
                        should_calc_even = False
                    else:
                        should_calc_even = True
                        self.accumulated_rel_l1_distance_even = 0
                self.previous_e0_even = modulated_inp.clone()

            else: # odd -> unconditon
                self.is_even = False
                if self.cnt < self.ret_steps or self.cnt >= self.cutoff_steps:
                    should_calc_odd = True
                    self.accumulated_rel_l1_distance_odd = 0
                else: 
                    rescale_func = np.poly1d(self.coefficients)
                    self.accumulated_rel_l1_distance_odd += rescale_func(((modulated_inp-self.previous_e0_odd).abs().mean() / self.previous_e0_odd.abs().mean()).cpu().item())
                    if self.accumulated_rel_l1_distance_odd < self.teacache_thresh:
                        should_calc_odd = False
                    else:
                        should_calc_odd = True
                        self.accumulated_rel_l1_distance_odd = 0
                self.previous_e0_odd = modulated_inp.clone()

        if self.enable_teacache: 
            if self.is_even:
                if not should_calc_even:
                    x += self.previous_residual_even
                else:
                    ori_x = x.clone()
                    for block in self.blocks:
                        x = block(x, **kwargs)
                    self.previous_residual_even = x - ori_x
            else:
                if not should_calc_odd:
                    x += self.previous_residual_odd
                else:
                    ori_x = x.clone()
                    for block in self.blocks:
                        x = block(x, **kwargs)
                    self.previous_residual_odd = x - ori_x

            self.cnt += 1
            if self.cnt >= self.num_steps:
                self.cnt = 0
        else:
            for block in self.blocks:
                x = block(x, **kwargs)

        x = self.head(x, e)

        # unpatchify
        x = self.unpatchify(x, grid_sizes)

        return x.float()

    def unpatchify(self, x, grid_sizes):
        r"""
        Reconstruct video tensors from patch embeddings.

        Args:
            x (List[Tensor]):
                List of patchified features, each with shape [L, C_out * prod(patch_size)]
            grid_sizes (Tensor):
                Original spatial-temporal grid dimensions before patching,
                    shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches)

        Returns:
            List[Tensor]:
                Reconstructed video tensors with shape [C_out, F, H / 8, W / 8]
        """

        c = self.out_dim
        bs = x.shape[0]
        x = x.view(bs, *grid_sizes, *self.patch_size, c)
        x = torch.einsum("bfhwpqrc->bcfphqwr", x)
        x = x.reshape(bs, c, *[i * j for i, j in zip(grid_sizes, self.patch_size)])

        return x

    def set_ar_attention(self, causal_block_size):
        self.num_frame_per_block = causal_block_size
        self.flag_causal_attention = True
        for block in self.blocks:
            block.set_ar_attention()

    def init_weights(self):
        r"""
        Initialize model parameters using Xavier initialization.
        """

        # basic init
        for m in self.modules():
            if isinstance(m, nn.Linear):
                nn.init.xavier_uniform_(m.weight)
                if m.bias is not None:
                    nn.init.zeros_(m.bias)

        # init embeddings
        nn.init.xavier_uniform_(self.patch_embedding.weight.flatten(1))
        for m in self.text_embedding.modules():
            if isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, std=0.02)
        for m in self.time_embedding.modules():
            if isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, std=0.02)

        if self.inject_sample_info:
            nn.init.normal_(self.fps_embedding.weight, std=0.02)

            for m in self.fps_projection.modules():
                if isinstance(m, nn.Linear):
                    nn.init.normal_(m.weight, std=0.02)

            nn.init.zeros_(self.fps_projection[-1].weight)
            nn.init.zeros_(self.fps_projection[-1].bias)

        # init output layer
        nn.init.zeros_(self.head.head.weight)