File size: 4,389 Bytes
fc0a183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b1cf4c
fc0a183
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import os
from typing import List
from typing import Optional
from typing import Union

import numpy as np
import torch
from diffusers.video_processor import VideoProcessor
from tqdm import tqdm

from ..modules import get_text_encoder
from ..modules import get_transformer
from ..modules import get_vae
from ..scheduler.fm_solvers_unipc import FlowUniPCMultistepScheduler


class Text2VideoPipeline:
    def __init__(
        self, model_path, dit_path, device: str = "cuda", weight_dtype=torch.bfloat16, use_usp=False, offload=False
    ):
        load_device = "cpu" if offload else device
        self.transformer = get_transformer(dit_path, load_device, weight_dtype)
        vae_model_path = os.path.join(model_path, "Wan2.1_VAE.pth")
        self.vae = get_vae(vae_model_path, device, weight_dtype=torch.float32)
        self.text_encoder = get_text_encoder(model_path, load_device, weight_dtype)
        self.video_processor = VideoProcessor(vae_scale_factor=16)
        self.sp_size = 1
        self.device = device
        self.offload = offload
        if use_usp:
            from xfuser.core.distributed import get_sequence_parallel_world_size
            from ..distributed.xdit_context_parallel import usp_attn_forward, usp_dit_forward
            import types

            for block in self.transformer.blocks:
                block.self_attn.forward = types.MethodType(usp_attn_forward, block.self_attn)
                self.transformer.forward = types.MethodType(usp_dit_forward, self.transformer)
                self.sp_size = get_sequence_parallel_world_size()

        self.scheduler = FlowUniPCMultistepScheduler()
        self.vae_stride = (4, 8, 8)
        self.patch_size = (1, 2, 2)

    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]] = None,
        negative_prompt: Union[str, List[str]] = None,
        width: int = 544,
        height: int = 960,
        num_frames: int = 97,
        num_inference_steps: int = 50,
        guidance_scale: float = 5.0,
        shift: float = 5.0,
        generator: Optional[torch.Generator] = None,
    ):
        # preprocess
        F = num_frames
        target_shape = (
            self.vae.vae.z_dim,
            (F - 1) // self.vae_stride[0] + 1,
            height // self.vae_stride[1],
            width // self.vae_stride[2],
        )
        self.text_encoder.to(self.device)
        context = self.text_encoder.encode(prompt).to(self.device)
        context_null = self.text_encoder.encode(negative_prompt).to(self.device)
        if self.offload:
            self.text_encoder.cpu()
            torch.cuda.empty_cache()

        latents = [
            torch.randn(
                target_shape[0],
                target_shape[1],
                target_shape[2],
                target_shape[3],
                dtype=torch.float32,
                device=self.device,
                generator=generator,
            )
        ]

        # evaluation mode
        self.transformer.to(self.device)
        with torch.amp.autocast("cuda", dtype=self.transformer.dtype), torch.no_grad():
            self.scheduler.set_timesteps(num_inference_steps, device=self.device, shift=shift)
            timesteps = self.scheduler.timesteps

            for _, t in enumerate(tqdm(timesteps)):
                latent_model_input = torch.stack(latents)
                timestep = torch.stack([t])
                noise_pred_cond = self.transformer(latent_model_input, t=timestep, context=context)[0]
                noise_pred_uncond = self.transformer(latent_model_input, t=timestep, context=context_null)[0]

                noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_cond - noise_pred_uncond)

                temp_x0 = self.scheduler.step(
                    noise_pred.unsqueeze(0), t, latents[0].unsqueeze(0), return_dict=False, generator=generator
                )[0]
                latents = [temp_x0.squeeze(0)]
            if self.offload:
                self.transformer.cpu()
                torch.cuda.empty_cache()
            videos = self.vae.decode(latents[0])
            videos = (videos / 2 + 0.5).clamp(0, 1)
            videos = [video for video in videos]
            videos = [video.permute(1, 2, 3, 0) * 255 for video in videos]
            videos = [video.cpu().numpy().astype(np.uint8) for video in videos]
        return videos