File size: 14,461 Bytes
ce68674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfe20fa
 
ce68674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfe20fa
ce68674
 
 
 
 
bfe20fa
 
ce68674
 
 
 
 
 
 
bfe20fa
 
ce68674
 
6758722
 
 
bfe20fa
 
ce68674
 
 
 
bfe20fa
 
 
 
 
 
 
ce68674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfe20fa
 
 
 
ce68674
 
 
 
 
 
 
 
 
 
 
 
 
4ab1b29
 
ce68674
 
 
 
 
bfe20fa
ce68674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bfe20fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ce68674
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import gradio as gr
from omegaconf import OmegaConf
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from transformers import CLIPTextModel, CLIPTokenizer
from motionclone.models.unet import UNet3DConditionModel
from motionclone.pipelines.pipeline_animation import AnimationPipeline
from motionclone.utils.util import load_weights
from diffusers.utils.import_utils import is_xformers_available
from motionclone.utils.motionclone_functions import *
import json
from motionclone.utils.xformer_attention import *
import os
import numpy as np
import imageio
import shutil
import subprocess

# 权重下载函数
def download_weights():
    try:
        # 创建模型目录
        os.makedirs("models", exist_ok=True)
        os.makedirs("models/DreamBooth_LoRA", exist_ok=True)
        os.makedirs("models/Motion_Module", exist_ok=True)
        os.makedirs("models/SparseCtrl", exist_ok=True)

        # 下载 Stable Diffusion 模型
        if not os.path.exists("models/StableDiffusion"):
            subprocess.run(["git", "clone", "https://huggingface.co/stable-diffusion-v1-5/stable-diffusion-v1-5", "models/StableDiffusion"])

        # 下载 DreamBooth LoRA 模型
        if not os.path.exists("models/DreamBooth_LoRA/realisticVisionV60B1_v51VAE.safetensors"):
            subprocess.run(["wget", "https://huggingface.co/svjack/Realistic-Vision-V6.0-B1/resolve/main/realisticVisionV60B1_v51VAE.safetensors", "-O", "models/DreamBooth_LoRA/realisticVisionV60B1_v51VAE.safetensors"])

        # 下载 Motion Module 模型
        if not os.path.exists("models/Motion_Module/v3_sd15_mm.ckpt"):
            subprocess.run(["wget", "https://huggingface.co/guoyww/animatediff/resolve/main/v3_sd15_mm.ckpt", "-O", "models/Motion_Module/v3_sd15_mm.ckpt"])
        if not os.path.exists("models/Motion_Module/v3_sd15_adapter.ckpt"):
            subprocess.run(["wget", "https://huggingface.co/guoyww/animatediff/resolve/main/v3_sd15_adapter.ckpt", "-O", "models/Motion_Module/v3_sd15_adapter.ckpt"])

        # 下载 SparseCtrl 模型
        if not os.path.exists("models/SparseCtrl/v3_sd15_sparsectrl_rgb.ckpt"):
            subprocess.run(["wget", "https://huggingface.co/guoyww/animatediff/resolve/main/v3_sd15_sparsectrl_rgb.ckpt", "-O", "models/SparseCtrl/v3_sd15_sparsectrl_rgb.ckpt"])
        if not os.path.exists("models/SparseCtrl/v3_sd15_sparsectrl_scribble.ckpt"):
            subprocess.run(["wget", "https://huggingface.co/guoyww/animatediff/resolve/main/v3_sd15_sparsectrl_scribble.ckpt", "-O", "models/SparseCtrl/v3_sd15_sparsectrl_scribble.ckpt"])

        print("Weights downloaded successfully.")
    except Exception as e:
        print(f"Error downloading weights: {e}")

# 下载权重
download_weights()

# 加载 model_config
model_config_path = "configs/model_config/model_config.yaml"
model_config = OmegaConf.load(model_config_path)

# 硬编码的配置值
config = {
    "motion_module": "models/Motion_Module/v3_sd15_mm.ckpt",
    "dreambooth_path": "models/DreamBooth_LoRA/realisticVisionV60B1_v51VAE.safetensors",
    "model_config": model_config,
    "W": 512,
    "H": 512,
    "L": 16,
    "motion_guidance_blocks": ['up_blocks.1',]
}

# 写死 pretrained_model_path
pretrained_model_path = "models/StableDiffusion"

# 模型初始化逻辑
def initialize_models():
    # 设置设备
    adopted_dtype = torch.float16
    device = "cuda"
    set_all_seed(42)

    # 加载模型组件
    tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
    text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder").to(device).to(dtype=adopted_dtype)
    vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae").to(device).to(dtype=adopted_dtype)
    
    # 更新配置
    config["width"] = config.get("W", 512)
    config["height"] = config.get("H", 512)
    config["video_length"] = config.get("L", 16)
    
    # 加载模型配置
    unet = UNet3DConditionModel.from_pretrained_2d(pretrained_model_path, subfolder="unet", unet_additional_kwargs=config["model_config"]["unet_additional_kwargs"]).to(device).to(dtype=adopted_dtype)
    
    # 启用 xformers
    if is_xformers_available():
        unet.enable_xformers_memory_efficient_attention()

    # 创建 pipeline
    pipeline = AnimationPipeline(
        vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
        controlnet=None,
        scheduler=DDIMScheduler(**config["model_config"]["noise_scheduler_kwargs"]),
    ).to(device)
    
    # 加载权重
    pipeline = load_weights(
        pipeline,
        motion_module_path=config["motion_module"],
        dreambooth_model_path=config["dreambooth_path"],
    ).to(device)
    pipeline.text_encoder.to(dtype=adopted_dtype)
    
    # 加载自定义函数
    pipeline.scheduler.customized_step = schedule_customized_step.__get__(pipeline.scheduler)
    pipeline.scheduler.customized_set_timesteps = schedule_set_timesteps.__get__(pipeline.scheduler)
    pipeline.unet.forward = unet_customized_forward.__get__(pipeline.unet)
    pipeline.sample_video = sample_video.__get__(pipeline)
    pipeline.single_step_video = single_step_video.__get__(pipeline)
    pipeline.get_temp_attn_prob = get_temp_attn_prob.__get__(pipeline)
    pipeline.add_noise = add_noise.__get__(pipeline)
    pipeline.compute_temp_loss = compute_temp_loss.__get__(pipeline)
    pipeline.obtain_motion_representation = obtain_motion_representation.__get__(pipeline)
    
    # 冻结 UNet 参数
    for param in pipeline.unet.parameters():
        param.requires_grad = False
    pipeline.input_config, pipeline.unet.input_config = config, config
    
    # 准备 UNet 的 attention 和 conv
    pipeline.unet = prep_unet_attention(pipeline.unet, config["motion_guidance_blocks"])
    pipeline.unet = prep_unet_conv(pipeline.unet)
    
    return pipeline

# 初始化模型
pipeline = initialize_models()

def generate_video(uploaded_video, motion_representation_save_dir, generated_videos_save_dir, visible_gpu, default_seed, without_xformers, cfg_scale, negative_prompt, positive_prompt, inference_steps, guidance_scale, guidance_steps, warm_up_steps, cool_up_steps, motion_guidance_weight, motion_guidance_blocks, add_noise_step, new_prompt, seed):
    # 更新配置
    config.update({
        "cfg_scale": cfg_scale,
        "negative_prompt": negative_prompt,
        "positive_prompt": positive_prompt,
        "inference_steps": inference_steps,
        "guidance_scale": guidance_scale,
        "guidance_steps": guidance_steps,
        "warm_up_steps": warm_up_steps,
        "cool_up_steps": cool_up_steps,
        "motion_guidance_weight": motion_guidance_weight,
        #"motion_guidance_blocks": motion_guidance_blocks,
        "add_noise_step": add_noise_step
    })
    
    # 设置环境变量
    os.environ["CUDA_VISIBLE_DEVICES"] = visible_gpu or str(os.getenv('CUDA_VISIBLE_DEVICES', 0))

    device = pipeline.device
    
    # 创建保存目录
    if not os.path.exists(generated_videos_save_dir):
        os.makedirs(generated_videos_save_dir)
    
    # 处理上传的视频
    if uploaded_video is not None:
        pipeline.scheduler.customized_set_timesteps(config["inference_steps"], config["guidance_steps"], config["guidance_scale"], device=device, timestep_spacing_type="uneven")
        
        # 将上传的视频保存到指定路径
        video_path = os.path.join(generated_videos_save_dir, os.path.basename(uploaded_video))
        #shutil.move(uploaded_video, video_path)
        shutil.copy2(uploaded_video, video_path)
        
        print("video_path :")
        print(video_path)
        
        # 更新配置
        config["video_path"] = video_path
        config["new_prompt"] = new_prompt + config.get("positive_prompt", "")

        from types import SimpleNamespace
        
        pipeline.input_config, pipeline.unet.input_config = SimpleNamespace(**config), SimpleNamespace(**config)

        print("pipeline.input_config.video_path :")
        print(pipeline.input_config.video_path)
        
        # 提取运动表示
        seed_motion = seed if seed is not None else default_seed
        generator = torch.Generator(device=pipeline.device)
        generator.manual_seed(seed_motion)
        if not os.path.exists(motion_representation_save_dir):
            os.makedirs(motion_representation_save_dir)
        motion_representation_path = os.path.join(motion_representation_save_dir, os.path.splitext(os.path.basename(config["video_path"]))[0] + '.pt')
        pipeline.obtain_motion_representation(generator=generator, motion_representation_path=motion_representation_path)
        
        # 生成视频
        seed = seed_motion
        generator = torch.Generator(device=pipeline.device)
        generator.manual_seed(seed)
        pipeline.input_config.seed = seed
        
        videos = pipeline.sample_video(generator=generator)

        #print("videos :")
        #print(videos)
        
        videos = rearrange(videos, "b c f h w -> b f h w c")
        save_path = os.path.join(generated_videos_save_dir, os.path.splitext(os.path.basename(config["video_path"]))[0] + "_" + config["new_prompt"].strip().replace(' ', '_') + str(seed_motion) + "_" + str(seed) + '.mp4')
        videos_uint8 = (videos[0] * 255).astype(np.uint8)
        imageio.mimwrite(save_path, videos_uint8, fps=8)
        print(save_path, "is done")

        return save_path
    else:
        return "No video uploaded."

# 使用 Gradio Blocks 构建界面
with gr.Blocks() as demo:
    # 页面标题和描述
    gr.Markdown("# MotionClone-Text-to-Video Generation")
    gr.Markdown("This tool allows you to generate videos from text prompts using a pre-trained model. Upload a motion reference video, provide a new prompt, and adjust the settings to create your custom video.")

    # 主要输入区域
    with gr.Row():
        with gr.Column():
            # 视频上传
            uploaded_video = gr.Video(label="Upload Video")
            # 新提示词
            new_prompt = gr.Textbox(label="New Prompt", value="A beautiful scene", lines=2)
            # 种子
            seed = gr.Number(label="Seed", value=42)
            # 生成按钮
            generate_button = gr.Button("Generate Video")

        with gr.Column():
            # 输出视频
            output_video = gr.Video(label="Generated Video")

    # 高级设置区域
    with gr.Accordion("Advanced Settings", open=False):
        with gr.Row():
            with gr.Column():
                motion_representation_save_dir = gr.Textbox(label="Motion Representation Save Dir", value="motion_representation/")
                generated_videos_save_dir = gr.Textbox(label="Generated Videos Save Dir", value="generated_videos")
                visible_gpu = gr.Textbox(label="Visible GPU", value="0")
                default_seed = gr.Number(label="Default Seed", value=2025)
                without_xformers = gr.Checkbox(label="Without Xformers", value=False)
            with gr.Column():
                cfg_scale = gr.Number(label="CFG Scale", value=7.5)
                negative_prompt = gr.Textbox(label="Negative Prompt", value="bad anatomy, extra limbs, ugly, deformed, noisy, blurry, distorted, out of focus, poorly drawn face, poorly drawn hands, missing fingers")
                positive_prompt = gr.Textbox(label="Positive Prompt", value="8k, high detailed, best quality, film grain, Fujifilm XT3")
                inference_steps = gr.Number(label="Inference Steps", value=100)
                guidance_scale = gr.Number(label="Guidance Scale", value=0.3)
                guidance_steps = gr.Number(label="Guidance Steps", value=50)
                warm_up_steps = gr.Number(label="Warm Up Steps", value=10)
                cool_up_steps = gr.Number(label="Cool Up Steps", value=10)
                motion_guidance_weight = gr.Number(label="Motion Guidance Weight", value=2000)
                motion_guidance_blocks = gr.Textbox(label="Motion Guidance Blocks", value="['up_blocks.1']")
                add_noise_step = gr.Number(label="Add Noise Step", value=400)

    # 绑定生成函数
    generate_button.click(
        generate_video,
        inputs=[
            uploaded_video, motion_representation_save_dir, generated_videos_save_dir, visible_gpu, default_seed, without_xformers, cfg_scale, negative_prompt, positive_prompt, inference_steps, guidance_scale, guidance_steps, warm_up_steps, cool_up_steps, motion_guidance_weight, motion_guidance_blocks, add_noise_step, new_prompt, seed
        ],
        outputs=output_video
    )

    # 定义示例数据
    examples = [
        {"video_path": "reference_videos/camera_zoom_in.mp4", "new_prompt": "Relics on the seabed", "seed": 42},
        {"video_path": "reference_videos/camera_zoom_in.mp4", "new_prompt": "A road in the mountain", "seed": 42},
        {"video_path": "reference_videos/camera_zoom_in.mp4", "new_prompt": "Caves, a path for exploration", "seed": 2026},
        {"video_path": "reference_videos/camera_zoom_in.mp4", "new_prompt": "Railway for train", "seed": 2026},
        {"video_path": "reference_videos/camera_zoom_out.mp4", "new_prompt": "Tree, in the mountain", "seed": 2026},
        {"video_path": "reference_videos/camera_zoom_out.mp4", "new_prompt": "Red car on the track", "seed": 2026},
        {"video_path": "reference_videos/camera_zoom_out.mp4", "new_prompt": "Man, standing in his garden.", "seed": 2026},
        {"video_path": "reference_videos/camera_1.mp4", "new_prompt": "A island, on the ocean, sunny day", "seed": 42},
        {"video_path": "reference_videos/camera_1.mp4", "new_prompt": "A tower, with fireworks", "seed": 42},
        {"video_path": "reference_videos/camera_pan_up.mp4", "new_prompt": "Beautiful house, around with flowers", "seed": 42},
        {"video_path": "reference_videos/camera_translation_2.mp4", "new_prompt": "Forest, in winter", "seed": 2028},
        {"video_path": "reference_videos/camera_pan_down.mp4", "new_prompt": "Eagle, standing in the tree", "seed": 2026}
    ]
    examples = list(map(lambda d: [d["video_path"], d["new_prompt"], d["seed"]], examples))

    # 添加示例
    gr.Examples(
        examples=examples,
        inputs=[uploaded_video, new_prompt, seed],
        outputs=output_video,
        fn=generate_video,
        cache_examples=False
    )


# 启动应用
demo.launch(share = True)