File size: 8,651 Bytes
ce68674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import argparse
from omegaconf import OmegaConf
import torch
from diffusers import AutoencoderKL, DDIMScheduler
from transformers import CLIPTextModel, CLIPTokenizer
from motionclone.models.unet import UNet3DConditionModel
from motionclone.models.sparse_controlnet import SparseControlNetModel
from motionclone.pipelines.pipeline_animation import AnimationPipeline
from motionclone.utils.util import load_weights, auto_download
from diffusers.utils.import_utils import is_xformers_available
from motionclone.utils.motionclone_functions import *
import json
from motionclone.utils.xformer_attention import *


def main(args):

    os.environ["CUDA_VISIBLE_DEVICES"] = args.visible_gpu or str(os.getenv('CUDA_VISIBLE_DEVICES', 0))
    
    config  = OmegaConf.load(args.inference_config)
    adopted_dtype = torch.float16
    device = "cuda"
    set_all_seed(42)
    
    tokenizer    = CLIPTokenizer.from_pretrained(args.pretrained_model_path, subfolder="tokenizer")
    text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_path, subfolder="text_encoder").to(device).to(dtype=adopted_dtype)
    vae          = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae").to(device).to(dtype=adopted_dtype)
    
    config.width = config.get("W", args.W)
    config.height = config.get("H", args.H)
    config.video_length = config.get("L", args.L)
    
    if not os.path.exists(args.generated_videos_save_dir):
        os.makedirs(args.generated_videos_save_dir)
    OmegaConf.save(config, os.path.join(args.generated_videos_save_dir,"inference_config.json"))
    
    model_config = OmegaConf.load(config.get("model_config", ""))
    unet = UNet3DConditionModel.from_pretrained_2d(args.pretrained_model_path, subfolder="unet", unet_additional_kwargs=OmegaConf.to_container(model_config.unet_additional_kwargs),).to(device).to(dtype=adopted_dtype)
    
    # load controlnet model
    controlnet =  None
    if config.get("controlnet_path", "") != "":
        # assert model_config.get("controlnet_images", "") != ""
        assert config.get("controlnet_config", "") != ""
        
        unet.config.num_attention_heads = 8
        unet.config.projection_class_embeddings_input_dim = None

        controlnet_config = OmegaConf.load(config.controlnet_config)
        controlnet = SparseControlNetModel.from_unet(unet, controlnet_additional_kwargs=controlnet_config.get("controlnet_additional_kwargs", {})).to(device).to(dtype=adopted_dtype)

        auto_download(config.controlnet_path, is_dreambooth_lora=False)
        print(f"loading controlnet checkpoint from {config.controlnet_path} ...")
        controlnet_state_dict = torch.load(config.controlnet_path, map_location="cpu")
        controlnet_state_dict = controlnet_state_dict["controlnet"] if "controlnet" in controlnet_state_dict else controlnet_state_dict
        controlnet_state_dict = {name: param for name, param in controlnet_state_dict.items() if "pos_encoder.pe" not in name}
        controlnet_state_dict.pop("animatediff_config", "")
        controlnet.load_state_dict(controlnet_state_dict)
        del controlnet_state_dict

    # set xformers
    if is_xformers_available() and (not args.without_xformers):
        unet.enable_xformers_memory_efficient_attention()

    pipeline = AnimationPipeline(
        vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet,
        controlnet=controlnet,
        scheduler=DDIMScheduler(**OmegaConf.to_container(model_config.noise_scheduler_kwargs)),
    ).to(device)
    
    pipeline = load_weights(
        pipeline,
        # motion module
        motion_module_path         = config.get("motion_module", ""),
        # domain adapter
        adapter_lora_path          = config.get("adapter_lora_path", ""),
        adapter_lora_scale         = config.get("adapter_lora_scale", 1.0),
        # image layer
        dreambooth_model_path      = config.get("dreambooth_path", ""),
    ).to(device)
    pipeline.text_encoder.to(dtype=adopted_dtype)
    
    # customized functions in motionclone_functions
    pipeline.scheduler.customized_step = schedule_customized_step.__get__(pipeline.scheduler)
    pipeline.scheduler.customized_set_timesteps = schedule_set_timesteps.__get__(pipeline.scheduler)
    pipeline.unet.forward = unet_customized_forward.__get__(pipeline.unet)
    pipeline.sample_video = sample_video.__get__(pipeline)
    pipeline.single_step_video = single_step_video.__get__(pipeline)
    pipeline.get_temp_attn_prob = get_temp_attn_prob.__get__(pipeline)
    pipeline.add_noise = add_noise.__get__(pipeline)
    pipeline.compute_temp_loss = compute_temp_loss.__get__(pipeline)
    pipeline.obtain_motion_representation = obtain_motion_representation.__get__(pipeline)
    
    for param in pipeline.unet.parameters():
        param.requires_grad = False
    for param in pipeline.controlnet.parameters():
        param.requires_grad = False
    
    pipeline.input_config,  pipeline.unet.input_config = config,  config
    pipeline.unet = prep_unet_attention(pipeline.unet,pipeline.input_config.motion_guidance_blocks)
    pipeline.unet = prep_unet_conv(pipeline.unet)
    pipeline.scheduler.customized_set_timesteps(config.inference_steps, config.guidance_steps,config.guidance_scale,device=device,timestep_spacing_type = "uneven")
    
    with open(args.examples, 'r') as files:
        for line in files:
            # prepare infor of each case
            example_infor = json.loads(line)
            config.video_path = example_infor["video_path"]
            config.condition_image_path_list = example_infor["condition_image_paths"]
            config.image_index = example_infor.get("image_index",[0])
            assert len(config.image_index) == len(config.condition_image_path_list)
            config.new_prompt = example_infor["new_prompt"] + config.get("positive_prompt", "")
            config.controlnet_scale = example_infor.get("controlnet_scale", 1.0)
            pipeline.input_config,  pipeline.unet.input_config = config,  config  # update config
            
            #  perform motion representation extraction
            seed_motion = seed_motion = example_infor.get("seed", args.default_seed) 
            generator = torch.Generator(device=pipeline.device)
            generator.manual_seed(seed_motion)
            if not os.path.exists(args.motion_representation_save_dir):
                os.makedirs(args.motion_representation_save_dir)
            motion_representation_path = os.path.join(args.motion_representation_save_dir,  os.path.splitext(os.path.basename(config.video_path))[0] + '.pt') 
            pipeline.obtain_motion_representation(generator= generator, motion_representation_path = motion_representation_path, use_controlnet=True,) 
            
            # perform video generation
            seed = seed_motion # can assign other seed here
            generator = torch.Generator(device=pipeline.device)
            generator.manual_seed(seed)
            pipeline.input_config.seed = seed
            videos = pipeline.sample_video(generator = generator, add_controlnet=True,)

            videos = rearrange(videos, "b c f h w -> b f h w c")
            save_path = os.path.join(args.generated_videos_save_dir, os.path.splitext(os.path.basename(config.video_path))[0]
                                        + "_" + config.new_prompt.strip().replace(' ', '_') + str(seed_motion) + "_" +str(seed)+'.mp4')                                        
            videos_uint8 = (videos[0] * 255).astype(np.uint8)
            imageio.mimwrite(save_path, videos_uint8, fps=8)
            print(save_path,"is done")

if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument("--pretrained-model-path", type=str, default="models/StableDiffusion",)
        
    parser.add_argument("--inference_config",                type=str, default="configs/i2v_sketch.yaml")
    parser.add_argument("--examples",                type=str, default="configs/i2v_sketch.jsonl")
    parser.add_argument("--motion-representation-save-dir",      type=str, default="motion_representation/")
    parser.add_argument("--generated-videos-save-dir",                type=str, default="generated_videos/")
    
    parser.add_argument("--visible_gpu", type=str, default=None)
    parser.add_argument("--default-seed", type=int, default=76739)
    parser.add_argument("--L", type=int, default=16)
    parser.add_argument("--W", type=int, default=512)
    parser.add_argument("--H", type=int, default=512)

    parser.add_argument("--without-xformers", action="store_true")

    args = parser.parse_args()
    main(args)