Spaces:
Runtime error
Runtime error
File size: 18,188 Bytes
ad0ab61 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 |
import os
import random
import torch
import cv2
import gradio as gr
import numpy as np
from huggingface_hub import snapshot_download
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
from diffusers.utils import load_image
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import StableDiffusionXLControlNetImg2ImgPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from kolors.models.controlnet import ControlNetModel
from diffusers import AutoencoderKL
from kolors.models.unet_2d_condition import UNet2DConditionModel
from diffusers import EulerDiscreteScheduler
from PIL import Image
from annotator.midas import MidasDetector
from annotator.dwpose import DWposeDetector
from annotator.util import resize_image, HWC3
from zipfile import ZipFile
from uuid import uuid1
from PIL import Image
device = "cuda"
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
ckpt_dir_depth = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Depth")
ckpt_dir_canny = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Canny")
ckpt_dir_ipa = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus")
ckpt_dir_pose = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Pose")
'''
ckpt_dir = "Kolors"
ckpt_dir_depth = "Kolors-ControlNet-Depth"
ckpt_dir_canny = "Kolors-ControlNet-Canny"
ckpt_dir_ipa = "Kolors-IP-Adapter-Plus"
ckpt_dir_pose = "Kolors-ControlNet-Pose"
'''
text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)
image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_dir_ipa}/image_encoder', ignore_mismatched_sizes=True).to(dtype=torch.float16, device=device)
ip_img_size = 336
clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size)
model_midas = MidasDetector()
model_dwpose = DWposeDetector()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 512
def process_canny_condition(image, canny_threods=[100, 200]):
np_image = image.copy()
np_image = cv2.Canny(np_image, canny_threods[0], canny_threods[1])
np_image = np_image[:, :, None]
np_image = np.concatenate([np_image, np_image, np_image], axis=2)
np_image = HWC3(np_image)
return Image.fromarray(np_image)
def process_depth_condition_midas(img, res=1024):
h, w, _ = img.shape
img = resize_image(HWC3(img), res)
result = HWC3(model_midas(img))
result = cv2.resize(result, (w, h))
return Image.fromarray(result)
def process_dwpose_condition(image, res=1024):
h, w, _ = image.shape
img = resize_image(HWC3(image), res)
out_res, out_img = model_dwpose(image)
result = HWC3(out_img)
result = cv2.resize(result, (w, h))
return Image.fromarray(result)
def infer_canny(prompt,
image=None,
ipa_img=None,
negative_prompt="nsfw,脸部阴影,低分辨率,糟糕的解剖结构、糟糕的手,缺失手指、质量最差、低质量、jpeg伪影、模糊、糟糕,黑脸,霓虹灯",
seed=66,
randomize_seed=False,
guidance_scale=5.0,
num_inference_steps=50,
controlnet_conditioning_scale=0.5,
control_guidance_end=0.9,
strength=1.0,
ip_scale=0.5,
num_images=1):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
init_image = resize_image(image, MAX_IMAGE_SIZE)
pipe = pipe_canny.to("cuda")
pipe.set_ip_adapter_scale([ip_scale])
condi_img = process_canny_condition(np.array(init_image))
images = []
for i in range(num_images):
generator = torch.Generator().manual_seed(seed + i)
image = pipe(
prompt=prompt,
image=init_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
control_guidance_end=control_guidance_end,
ip_adapter_image=[ipa_img],
strength=strength,
control_image=condi_img,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
generator=generator,
).images[0]
images.append(image)
return [condi_img] + images, seed
def infer_depth(prompt,
image=None,
ipa_img=None,
negative_prompt="nsfw,脸部阴影,低分辨率,糟糕的解剖结构、糟糕的手,缺失手指、质量最差、低质量、jpeg伪影、模糊、糟糕,黑脸,霓虹灯",
seed=66,
randomize_seed=False,
guidance_scale=5.0,
num_inference_steps=50,
controlnet_conditioning_scale=0.5,
control_guidance_end=0.9,
strength=1.0,
ip_scale=0.5,
num_images=1):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
init_image = resize_image(image, MAX_IMAGE_SIZE)
pipe = pipe_depth.to("cuda")
pipe.set_ip_adapter_scale([ip_scale])
condi_img = process_depth_condition_midas(np.array(init_image), MAX_IMAGE_SIZE)
images = []
for i in range(num_images):
generator = torch.Generator().manual_seed(seed + i)
image = pipe(
prompt=prompt,
image=init_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
control_guidance_end=control_guidance_end,
ip_adapter_image=[ipa_img],
strength=strength,
control_image=condi_img,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
generator=generator,
).images[0]
images.append(image)
return [condi_img] + images, seed
def infer_pose(prompt,
image=None,
ipa_img=None,
negative_prompt="nsfw,脸部阴影,低分辨率,jpeg伪影、模糊、糟糕,黑脸,霓虹灯",
seed=66,
randomize_seed=False,
guidance_scale=5.0,
num_inference_steps=50,
controlnet_conditioning_scale=0.5,
control_guidance_end=0.9,
strength=1.0,
ip_scale=0.5,
num_images=1):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
init_image = resize_image(image, MAX_IMAGE_SIZE)
pipe = pipe_pose.to("cuda")
pipe.set_ip_adapter_scale([ip_scale])
condi_img = process_dwpose_condition(np.array(init_image), MAX_IMAGE_SIZE)
images = []
for i in range(num_images):
generator = torch.Generator().manual_seed(seed + i)
image = pipe(
prompt=prompt,
image=init_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
control_guidance_end=control_guidance_end,
ip_adapter_image=[ipa_img],
strength=strength,
control_image=condi_img,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
generator=generator,
).images[0]
images.append(image)
return [condi_img] + images, seed
canny_examples = [
["一个红色头发的女孩,唯美风景,清新明亮,斑驳的光影,最好的质量,超细节,8K画质",
"image/woman_2.png", "image/2.png", 3],
]
depth_examples = [
["一个漂亮的女孩,最好的质量,超细节,8K画质",
"image/1.png", "image/woman_1.png", 3],
]
pose_examples = [
["一位穿着紫色泡泡袖连衣裙、戴着皇冠和白色蕾丝手套的女孩,超高分辨率,最佳品质,8k画质",
"image/woman_3.png", "image/woman_4.png", 3],
]
css = """
#col-left {
margin: 0 auto;
max-width: 600px;
}
#col-right {
margin: 0 auto;
max-width: 750px;
}
#button {
color: blue;
}
"""
def load_description(fp):
with open(fp, 'r', encoding='utf-8') as f:
content = f.read()
return content
def clear_resources():
global pipe_canny, pipe_depth, pipe_pose
if 'pipe_canny' in globals():
del pipe_canny
if 'pipe_depth' in globals():
del pipe_depth
if 'pipe_pose' in globals():
del pipe_pose
torch.cuda.empty_cache()
def load_canny_pipeline():
global pipe_canny
controlnet_canny = ControlNetModel.from_pretrained(f"{ckpt_dir_canny}", revision=None).half().to(device)
pipe_canny = StableDiffusionXLControlNetImg2ImgPipeline(
vae=vae,
controlnet=controlnet_canny,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
image_encoder=image_encoder,
feature_extractor=clip_image_processor,
force_zeros_for_empty_prompt=False
)
pipe_canny.load_ip_adapter(f'{ckpt_dir_ipa}', subfolder="", weight_name=["ip_adapter_plus_general.bin"])
def load_depth_pipeline():
global pipe_depth
controlnet_depth = ControlNetModel.from_pretrained(f"{ckpt_dir_depth}", revision=None).half().to(device)
pipe_depth = StableDiffusionXLControlNetImg2ImgPipeline(
vae=vae,
controlnet=controlnet_depth,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
image_encoder=image_encoder,
feature_extractor=clip_image_processor,
force_zeros_for_empty_prompt=False
)
pipe_depth.load_ip_adapter(f'{ckpt_dir_ipa}', subfolder="", weight_name=["ip_adapter_plus_general.bin"])
def load_pose_pipeline():
global pipe_pose
controlnet_pose = ControlNetModel.from_pretrained(f"{ckpt_dir_pose}", revision=None).half().to(device)
pipe_pose = StableDiffusionXLControlNetImg2ImgPipeline(
vae=vae,
controlnet=controlnet_pose,
text_encoder=text_encoder,
tokenizer=tokenizer,
unet=unet,
scheduler=scheduler,
image_encoder=image_encoder,
feature_extractor=clip_image_processor,
force_zeros_for_empty_prompt=False
)
pipe_pose.load_ip_adapter(f'{ckpt_dir_ipa}', subfolder="", weight_name=["ip_adapter_plus_general.bin"])
def switch_to_canny():
clear_resources()
load_canny_pipeline()
return gr.update(visible=True)
def switch_to_depth():
clear_resources()
load_depth_pipeline()
return gr.update(visible=True)
def switch_to_pose():
clear_resources()
load_pose_pipeline()
return gr.update(visible=True)
def zip_images(gallery, zip_name):
if gallery is None or len(gallery) == 0:
return None
if not zip_name:
zip_name = "generated_images.zip"
with ZipFile(zip_name, "w") as zipObj:
for i, image in enumerate(gallery):
temp_file = f"temp_{i}.png"
Image.open(image[0]).save(temp_file)
#image.save(temp_file)
zipObj.write(temp_file, f"image_{i}.png")
os.remove(temp_file)
return zip_name
def update_zip_name(ipa_image_file):
#print(ipa_image_file)
if ipa_image_file is not None and type(ipa_image_file) == type(""):
name = ipa_image_file.split("/")[-1].split('.')[0]
return "{}_generated_images.zip".format(name)
return "generated_images.zip"
with gr.Blocks(css=css) as Kolors:
gr.HTML(load_description("assets/title.md"))
with gr.Row():
with gr.Column(elem_id="col-left"):
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
placeholder="Enter your prompt",
lines=2
)
with gr.Row():
image = gr.Image(label="Image", type="pil")
#ipa_image = gr.Image(label="IP-Adapter-Image", type="pil")
ipa_image = gr.Image(type="pil", visible = False)
ipa_image_file = gr.Image(type = "filepath", label="IP-Adapter-Image")
with gr.Row():
num_images = gr.Slider(
label="Number of Images",
minimum=1,
maximum=10,
step=1,
value=1,
)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Textbox(
label="Negative prompt",
placeholder="Enter a negative prompt",
visible=True,
value="nsfw,脸部阴影,低分辨率,糟糕的解剖结构、糟糕的手,缺失手指、质量最差、低质量、jpeg伪影、模糊、糟糕,黑脸,霓虹灯"
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=5.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=10,
maximum=50,
step=1,
value=30,
)
with gr.Row():
controlnet_conditioning_scale = gr.Slider(
label="Controlnet Conditioning Scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.5,
)
control_guidance_end = gr.Slider(
label="Control Guidance End",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.9,
)
with gr.Row():
strength = gr.Slider(
label="Strength",
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
)
ip_scale = gr.Slider(
label="IP_Scale",
minimum=0.0,
maximum=1.0,
step=0.1,
value=0.5,
)
with gr.Row():
canny_button = gr.Button("Canny", elem_id="button")
depth_button = gr.Button("Depth", elem_id="button")
pose_button = gr.Button("Pose", elem_id="button")
with gr.Column(elem_id="col-right"):
result = gr.Gallery(label="Result", show_label=False, columns=3)
seed_used = gr.Number(label="Seed Used")
zip_name = gr.Textbox(label="Zip File Name", value="generated_images.zip")
zip_button = gr.Button("Zip Images as Zip", elem_id="button")
download_file = gr.File(label="Download Zip File of Image")
with gr.Row():
gr.Examples(
fn=infer_canny,
examples=canny_examples,
inputs=[prompt, image, ipa_image_file, num_images],
outputs=[result, seed_used],
label="Canny"
)
with gr.Row():
gr.Examples(
fn=infer_depth,
examples=depth_examples,
inputs=[prompt, image, ipa_image_file, num_images],
outputs=[result, seed_used],
label="Depth"
)
with gr.Row():
gr.Examples(
fn=infer_pose,
examples=pose_examples,
inputs=[prompt, image, ipa_image_file, num_images],
outputs=[result, seed_used],
label="Pose"
)
canny_button.click(
fn=switch_to_canny,
outputs=[canny_button]
).then(
fn=infer_canny,
inputs=[prompt, image, ipa_image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength, ip_scale, num_images],
outputs=[result, seed_used]
)
depth_button.click(
fn=switch_to_depth,
outputs=[depth_button]
).then(
fn=infer_depth,
inputs=[prompt, image, ipa_image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength, ip_scale, num_images],
outputs=[result, seed_used]
)
pose_button.click(
fn=switch_to_pose,
outputs=[pose_button]
).then(
fn=infer_pose,
inputs=[prompt, image, ipa_image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength, ip_scale, num_images],
outputs=[result, seed_used]
)
ipa_image_file.change(
fn = lambda x: Image.open(x),
inputs = [ipa_image_file],
outputs = [ipa_image]
)
ipa_image_file.change(
fn=update_zip_name,
inputs=[ipa_image_file],
outputs=[zip_name]
)
zip_button.click(
fn=zip_images,
inputs=[result, zip_name],
outputs=download_file
)
Kolors.queue().launch(debug=True, share=True) |