File size: 18,188 Bytes
ad0ab61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
import os
import random
import torch
import cv2
import gradio as gr
import numpy as np
from huggingface_hub import snapshot_download
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
from diffusers.utils import load_image
from kolors.pipelines.pipeline_controlnet_xl_kolors_img2img import StableDiffusionXLControlNetImg2ImgPipeline
from kolors.models.modeling_chatglm import ChatGLMModel
from kolors.models.tokenization_chatglm import ChatGLMTokenizer
from kolors.models.controlnet import ControlNetModel
from diffusers import AutoencoderKL
from kolors.models.unet_2d_condition import UNet2DConditionModel
from diffusers import EulerDiscreteScheduler
from PIL import Image
from annotator.midas import MidasDetector
from annotator.dwpose import DWposeDetector
from annotator.util import resize_image, HWC3
from zipfile import ZipFile
from uuid import uuid1
from PIL import Image

device = "cuda"
ckpt_dir = snapshot_download(repo_id="Kwai-Kolors/Kolors")
ckpt_dir_depth = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Depth")
ckpt_dir_canny = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Canny")
ckpt_dir_ipa = snapshot_download(repo_id="Kwai-Kolors/Kolors-IP-Adapter-Plus")
ckpt_dir_pose = snapshot_download(repo_id="Kwai-Kolors/Kolors-ControlNet-Pose")
'''
ckpt_dir = "Kolors"
ckpt_dir_depth = "Kolors-ControlNet-Depth"
ckpt_dir_canny = "Kolors-ControlNet-Canny"
ckpt_dir_ipa = "Kolors-IP-Adapter-Plus"
ckpt_dir_pose = "Kolors-ControlNet-Pose"
'''

text_encoder = ChatGLMModel.from_pretrained(f'{ckpt_dir}/text_encoder', torch_dtype=torch.float16).half().to(device)
tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder')
vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half().to(device)
scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler")
unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half().to(device)

image_encoder = CLIPVisionModelWithProjection.from_pretrained(f'{ckpt_dir_ipa}/image_encoder', ignore_mismatched_sizes=True).to(dtype=torch.float16, device=device)
ip_img_size = 336
clip_image_processor = CLIPImageProcessor(size=ip_img_size, crop_size=ip_img_size)

model_midas = MidasDetector()
model_dwpose = DWposeDetector()

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 512

def process_canny_condition(image, canny_threods=[100, 200]):
    np_image = image.copy()
    np_image = cv2.Canny(np_image, canny_threods[0], canny_threods[1])
    np_image = np_image[:, :, None]
    np_image = np.concatenate([np_image, np_image, np_image], axis=2)
    np_image = HWC3(np_image)
    return Image.fromarray(np_image)

def process_depth_condition_midas(img, res=1024):
    h, w, _ = img.shape
    img = resize_image(HWC3(img), res)
    result = HWC3(model_midas(img))
    result = cv2.resize(result, (w, h))
    return Image.fromarray(result)

def process_dwpose_condition(image, res=1024):
    h, w, _ = image.shape
    img = resize_image(HWC3(image), res)
    out_res, out_img = model_dwpose(image)
    result = HWC3(out_img)
    result = cv2.resize(result, (w, h))
    return Image.fromarray(result)

def infer_canny(prompt,
                image=None,
                ipa_img=None,
                negative_prompt="nsfw,脸部阴影,低分辨率,糟糕的解剖结构、糟糕的手,缺失手指、质量最差、低质量、jpeg伪影、模糊、糟糕,黑脸,霓虹灯",
                seed=66,
                randomize_seed=False,
                guidance_scale=5.0,
                num_inference_steps=50,
                controlnet_conditioning_scale=0.5,
                control_guidance_end=0.9,
                strength=1.0,
                ip_scale=0.5,
                num_images=1):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    init_image = resize_image(image, MAX_IMAGE_SIZE)
    pipe = pipe_canny.to("cuda")
    pipe.set_ip_adapter_scale([ip_scale])
    condi_img = process_canny_condition(np.array(init_image))
    images = []
    for i in range(num_images):
        generator = torch.Generator().manual_seed(seed + i)
        image = pipe(
            prompt=prompt,
            image=init_image,
            controlnet_conditioning_scale=controlnet_conditioning_scale,
            control_guidance_end=control_guidance_end,
            ip_adapter_image=[ipa_img],
            strength=strength,
            control_image=condi_img,
            negative_prompt=negative_prompt,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            num_images_per_prompt=1,
            generator=generator,
        ).images[0]
        images.append(image)
    return [condi_img] + images, seed

def infer_depth(prompt,
                image=None,
                ipa_img=None,
                negative_prompt="nsfw,脸部阴影,低分辨率,糟糕的解剖结构、糟糕的手,缺失手指、质量最差、低质量、jpeg伪影、模糊、糟糕,黑脸,霓虹灯",
                seed=66,
                randomize_seed=False,
                guidance_scale=5.0,
                num_inference_steps=50,
                controlnet_conditioning_scale=0.5,
                control_guidance_end=0.9,
                strength=1.0,
                ip_scale=0.5,
                num_images=1):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    init_image = resize_image(image, MAX_IMAGE_SIZE)
    pipe = pipe_depth.to("cuda")
    pipe.set_ip_adapter_scale([ip_scale])
    condi_img = process_depth_condition_midas(np.array(init_image), MAX_IMAGE_SIZE)
    images = []
    for i in range(num_images):
        generator = torch.Generator().manual_seed(seed + i)
        image = pipe(
            prompt=prompt,
            image=init_image,
            controlnet_conditioning_scale=controlnet_conditioning_scale,
            control_guidance_end=control_guidance_end,
            ip_adapter_image=[ipa_img],
            strength=strength,
            control_image=condi_img,
            negative_prompt=negative_prompt,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            num_images_per_prompt=1,
            generator=generator,
        ).images[0]
        images.append(image)
    return [condi_img] + images, seed

def infer_pose(prompt,
               image=None,
               ipa_img=None,
               negative_prompt="nsfw,脸部阴影,低分辨率,jpeg伪影、模糊、糟糕,黑脸,霓虹灯",
               seed=66,
               randomize_seed=False,
               guidance_scale=5.0,
               num_inference_steps=50,
               controlnet_conditioning_scale=0.5,
               control_guidance_end=0.9,
               strength=1.0,
               ip_scale=0.5,
               num_images=1):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    init_image = resize_image(image, MAX_IMAGE_SIZE)
    pipe = pipe_pose.to("cuda")
    pipe.set_ip_adapter_scale([ip_scale])
    condi_img = process_dwpose_condition(np.array(init_image), MAX_IMAGE_SIZE)
    images = []
    for i in range(num_images):
        generator = torch.Generator().manual_seed(seed + i)
        image = pipe(
            prompt=prompt,
            image=init_image,
            controlnet_conditioning_scale=controlnet_conditioning_scale,
            control_guidance_end=control_guidance_end,
            ip_adapter_image=[ipa_img],
            strength=strength,
            control_image=condi_img,
            negative_prompt=negative_prompt,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            num_images_per_prompt=1,
            generator=generator,
        ).images[0]
        images.append(image)
    return [condi_img] + images, seed

canny_examples = [
    ["一个红色头发的女孩,唯美风景,清新明亮,斑驳的光影,最好的质量,超细节,8K画质",
     "image/woman_2.png", "image/2.png", 3],
]

depth_examples = [
    ["一个漂亮的女孩,最好的质量,超细节,8K画质",
     "image/1.png", "image/woman_1.png", 3],
]

pose_examples = [
    ["一位穿着紫色泡泡袖连衣裙、戴着皇冠和白色蕾丝手套的女孩,超高分辨率,最佳品质,8k画质",
     "image/woman_3.png", "image/woman_4.png", 3],
]

css = """
#col-left {
    margin: 0 auto;
    max-width: 600px;
}
#col-right {
    margin: 0 auto;
    max-width: 750px;
}
#button {
    color: blue;
}
"""

def load_description(fp):
    with open(fp, 'r', encoding='utf-8') as f:
        content = f.read()
    return content

def clear_resources():
    global pipe_canny, pipe_depth, pipe_pose
    if 'pipe_canny' in globals():
        del pipe_canny
    if 'pipe_depth' in globals():
        del pipe_depth
    if 'pipe_pose' in globals():
        del pipe_pose
    torch.cuda.empty_cache()

def load_canny_pipeline():
    global pipe_canny
    controlnet_canny = ControlNetModel.from_pretrained(f"{ckpt_dir_canny}", revision=None).half().to(device)
    pipe_canny = StableDiffusionXLControlNetImg2ImgPipeline(
        vae=vae,
        controlnet=controlnet_canny,
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        unet=unet,
        scheduler=scheduler,
        image_encoder=image_encoder,
        feature_extractor=clip_image_processor,
        force_zeros_for_empty_prompt=False
    )
    pipe_canny.load_ip_adapter(f'{ckpt_dir_ipa}', subfolder="", weight_name=["ip_adapter_plus_general.bin"])

def load_depth_pipeline():
    global pipe_depth
    controlnet_depth = ControlNetModel.from_pretrained(f"{ckpt_dir_depth}", revision=None).half().to(device)
    pipe_depth = StableDiffusionXLControlNetImg2ImgPipeline(
        vae=vae,
        controlnet=controlnet_depth,
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        unet=unet,
        scheduler=scheduler,
        image_encoder=image_encoder,
        feature_extractor=clip_image_processor,
        force_zeros_for_empty_prompt=False
    )
    pipe_depth.load_ip_adapter(f'{ckpt_dir_ipa}', subfolder="", weight_name=["ip_adapter_plus_general.bin"])

def load_pose_pipeline():
    global pipe_pose
    controlnet_pose = ControlNetModel.from_pretrained(f"{ckpt_dir_pose}", revision=None).half().to(device)
    pipe_pose = StableDiffusionXLControlNetImg2ImgPipeline(
        vae=vae,
        controlnet=controlnet_pose,
        text_encoder=text_encoder,
        tokenizer=tokenizer,
        unet=unet,
        scheduler=scheduler,
        image_encoder=image_encoder,
        feature_extractor=clip_image_processor,
        force_zeros_for_empty_prompt=False
    )
    pipe_pose.load_ip_adapter(f'{ckpt_dir_ipa}', subfolder="", weight_name=["ip_adapter_plus_general.bin"])

def switch_to_canny():
    clear_resources()
    load_canny_pipeline()
    return gr.update(visible=True)

def switch_to_depth():
    clear_resources()
    load_depth_pipeline()
    return gr.update(visible=True)

def switch_to_pose():
    clear_resources()
    load_pose_pipeline()
    return gr.update(visible=True)

def zip_images(gallery, zip_name):
    if gallery is None or len(gallery) == 0:
        return None
    
    if not zip_name:
        zip_name = "generated_images.zip"
    
    with ZipFile(zip_name, "w") as zipObj:
        for i, image in enumerate(gallery):
            temp_file = f"temp_{i}.png"
            Image.open(image[0]).save(temp_file)
            #image.save(temp_file)
            zipObj.write(temp_file, f"image_{i}.png")
            os.remove(temp_file)
    
    return zip_name

def update_zip_name(ipa_image_file):
    #print(ipa_image_file)
    if ipa_image_file is not None and type(ipa_image_file) == type(""):
        name = ipa_image_file.split("/")[-1].split('.')[0]
        return "{}_generated_images.zip".format(name)
    return "generated_images.zip"

with gr.Blocks(css=css) as Kolors:
    gr.HTML(load_description("assets/title.md"))
    with gr.Row():
        with gr.Column(elem_id="col-left"):
            with gr.Row():
                prompt = gr.Textbox(
                    label="Prompt",
                    placeholder="Enter your prompt",
                    lines=2
                )
            with gr.Row():
                image = gr.Image(label="Image", type="pil")
                #ipa_image = gr.Image(label="IP-Adapter-Image", type="pil")
                ipa_image = gr.Image(type="pil", visible = False)
                ipa_image_file = gr.Image(type = "filepath", label="IP-Adapter-Image")
            with gr.Row():
                num_images = gr.Slider(
                    label="Number of Images",
                    minimum=1,
                    maximum=10,
                    step=1,
                    value=1,
                )
            with gr.Accordion("Advanced Settings", open=False):
                negative_prompt = gr.Textbox(
                    label="Negative prompt",
                    placeholder="Enter a negative prompt",
                    visible=True,
                    value="nsfw,脸部阴影,低分辨率,糟糕的解剖结构、糟糕的手,缺失手指、质量最差、低质量、jpeg伪影、模糊、糟糕,黑脸,霓虹灯"
                )
                seed = gr.Slider(
                    label="Seed",
                    minimum=0,
                    maximum=MAX_SEED,
                    step=1,
                    value=0,
                )
                randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
                with gr.Row():
                    guidance_scale = gr.Slider(
                        label="Guidance scale",
                        minimum=0.0,
                        maximum=10.0,
                        step=0.1,
                        value=5.0,
                    )
                    num_inference_steps = gr.Slider(
                        label="Number of inference steps",
                        minimum=10,
                        maximum=50,
                        step=1,
                        value=30,
                    )
                with gr.Row():
                    controlnet_conditioning_scale = gr.Slider(
                        label="Controlnet Conditioning Scale",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=0.5,
                    )
                    control_guidance_end = gr.Slider(
                        label="Control Guidance End",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=0.9,
                    )
                with gr.Row():
                    strength = gr.Slider(
                        label="Strength",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=1.0,
                    )
                    ip_scale = gr.Slider(
                        label="IP_Scale",
                        minimum=0.0,
                        maximum=1.0,
                        step=0.1,
                        value=0.5,
                    )
            with gr.Row():
                canny_button = gr.Button("Canny", elem_id="button")
                depth_button = gr.Button("Depth", elem_id="button")
                pose_button = gr.Button("Pose", elem_id="button")

        with gr.Column(elem_id="col-right"):
            result = gr.Gallery(label="Result", show_label=False, columns=3)
            seed_used = gr.Number(label="Seed Used")
            zip_name = gr.Textbox(label="Zip File Name", value="generated_images.zip")
            zip_button = gr.Button("Zip Images as Zip", elem_id="button")
            download_file = gr.File(label="Download Zip File of Image")

    with gr.Row():
        gr.Examples(
            fn=infer_canny,
            examples=canny_examples,
            inputs=[prompt, image, ipa_image_file, num_images],
            outputs=[result, seed_used],
            label="Canny"
        )
    with gr.Row():
        gr.Examples(
            fn=infer_depth,
            examples=depth_examples,
            inputs=[prompt, image, ipa_image_file, num_images],
            outputs=[result, seed_used],
            label="Depth"
        )
    with gr.Row():
        gr.Examples(
            fn=infer_pose,
            examples=pose_examples,
            inputs=[prompt, image, ipa_image_file, num_images],
            outputs=[result, seed_used],
            label="Pose"
        )

    canny_button.click(
        fn=switch_to_canny,
        outputs=[canny_button]
    ).then(
        fn=infer_canny,
        inputs=[prompt, image, ipa_image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength, ip_scale, num_images],
        outputs=[result, seed_used]
    )

    depth_button.click(
        fn=switch_to_depth,
        outputs=[depth_button]
    ).then(
        fn=infer_depth,
        inputs=[prompt, image, ipa_image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength, ip_scale, num_images],
        outputs=[result, seed_used]
    )

    pose_button.click(
        fn=switch_to_pose,
        outputs=[pose_button]
    ).then(
        fn=infer_pose,
        inputs=[prompt, image, ipa_image, negative_prompt, seed, randomize_seed, guidance_scale, num_inference_steps, controlnet_conditioning_scale, control_guidance_end, strength, ip_scale, num_images],
        outputs=[result, seed_used]
    )
    
    ipa_image_file.change(
        fn = lambda x: Image.open(x),
        inputs = [ipa_image_file],
        outputs = [ipa_image]
    )
    
    ipa_image_file.change(
            fn=update_zip_name,
            inputs=[ipa_image_file],
            outputs=[zip_name]
    )
    
    zip_button.click(
        fn=zip_images,
        inputs=[result, zip_name],
        outputs=download_file
    )

Kolors.queue().launch(debug=True, share=True)