File size: 16,930 Bytes
f070657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
import os

import torch
import torch.nn.functional as F
import numpy as np

from einops import rearrange

from .masactrl_utils import AttentionBase

from torchvision.utils import save_image


class MutualSelfAttentionControl(AttentionBase):
    MODEL_TYPE = {
        "SD": 16,
        "SDXL": 70
    }

    def __init__(self, start_step=4, start_layer=10, layer_idx=None, step_idx=None, total_steps=50, model_type="SD"):
        """
        Mutual self-attention control for Stable-Diffusion model
        Args:
            start_step: the step to start mutual self-attention control
            start_layer: the layer to start mutual self-attention control
            layer_idx: list of the layers to apply mutual self-attention control
            step_idx: list the steps to apply mutual self-attention control
            total_steps: the total number of steps
            model_type: the model type, SD or SDXL
        """
        super().__init__()
        self.total_steps = total_steps
        self.total_layers = self.MODEL_TYPE.get(model_type, 16)
        self.start_step = start_step
        self.start_layer = start_layer
        self.layer_idx = layer_idx if layer_idx is not None else list(range(start_layer, self.total_layers))
        self.step_idx = step_idx if step_idx is not None else list(range(start_step, total_steps))
        print("MasaCtrl at denoising steps: ", self.step_idx)
        print("MasaCtrl at U-Net layers: ", self.layer_idx)

    def attn_batch(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs):
        """
        Performing attention for a batch of queries, keys, and values
        """
        b = q.shape[0] // num_heads
        q = rearrange(q, "(b h) n d -> h (b n) d", h=num_heads)
        k = rearrange(k, "(b h) n d -> h (b n) d", h=num_heads)
        v = rearrange(v, "(b h) n d -> h (b n) d", h=num_heads)

        sim = torch.einsum("h i d, h j d -> h i j", q, k) * kwargs.get("scale")
        attn = sim.softmax(-1)
        out = torch.einsum("h i j, h j d -> h i d", attn, v)
        out = rearrange(out, "h (b n) d -> b n (h d)", b=b)
        return out

    def forward(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs):
        """
        Attention forward function
        """
        if is_cross or self.cur_step not in self.step_idx or self.cur_att_layer // 2 not in self.layer_idx:
            return super().forward(q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs)

        qu, qc = q.chunk(2)
        ku, kc = k.chunk(2)
        vu, vc = v.chunk(2)
        attnu, attnc = attn.chunk(2)

        out_u = self.attn_batch(qu, ku[:num_heads], vu[:num_heads], sim[:num_heads], attnu, is_cross, place_in_unet, num_heads, **kwargs)
        out_c = self.attn_batch(qc, kc[:num_heads], vc[:num_heads], sim[:num_heads], attnc, is_cross, place_in_unet, num_heads, **kwargs)
        out = torch.cat([out_u, out_c], dim=0)

        return out


class MutualSelfAttentionControlUnion(MutualSelfAttentionControl):
    def __init__(self, start_step=4, start_layer=10, layer_idx=None, step_idx=None, total_steps=50, model_type="SD"):
        """
        Mutual self-attention control for Stable-Diffusion model with unition source and target [K, V]
        Args:
            start_step: the step to start mutual self-attention control
            start_layer: the layer to start mutual self-attention control
            layer_idx: list of the layers to apply mutual self-attention control
            step_idx: list the steps to apply mutual self-attention control
            total_steps: the total number of steps
            model_type: the model type, SD or SDXL
        """
        super().__init__(start_step, start_layer, layer_idx, step_idx, total_steps, model_type)

    def forward(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs):
        """
        Attention forward function
        """
        if is_cross or self.cur_step not in self.step_idx or self.cur_att_layer // 2 not in self.layer_idx:
            return super().forward(q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs)

        qu_s, qu_t, qc_s, qc_t = q.chunk(4)
        ku_s, ku_t, kc_s, kc_t = k.chunk(4)
        vu_s, vu_t, vc_s, vc_t = v.chunk(4)
        attnu_s, attnu_t, attnc_s, attnc_t = attn.chunk(4)

        # source image branch
        out_u_s = super().forward(qu_s, ku_s, vu_s, sim, attnu_s, is_cross, place_in_unet, num_heads, **kwargs)
        out_c_s = super().forward(qc_s, kc_s, vc_s, sim, attnc_s, is_cross, place_in_unet, num_heads, **kwargs)

        # target image branch, concatenating source and target [K, V]
        out_u_t = self.attn_batch(qu_t, torch.cat([ku_s, ku_t]), torch.cat([vu_s, vu_t]), sim[:num_heads], attnu_t, is_cross, place_in_unet, num_heads, **kwargs)
        out_c_t = self.attn_batch(qc_t, torch.cat([kc_s, kc_t]), torch.cat([vc_s, vc_t]), sim[:num_heads], attnc_t, is_cross, place_in_unet, num_heads, **kwargs)

        out = torch.cat([out_u_s, out_u_t, out_c_s, out_c_t], dim=0)

        return out


class MutualSelfAttentionControlMask(MutualSelfAttentionControl):
    def __init__(self,  start_step=4, start_layer=10, layer_idx=None, step_idx=None, total_steps=50,  mask_s=None, mask_t=None, mask_save_dir=None, model_type="SD"):
        """
        Maske-guided MasaCtrl to alleviate the problem of fore- and background confusion
        Args:
            start_step: the step to start mutual self-attention control
            start_layer: the layer to start mutual self-attention control
            layer_idx: list of the layers to apply mutual self-attention control
            step_idx: list the steps to apply mutual self-attention control
            total_steps: the total number of steps
            mask_s: source mask with shape (h, w)
            mask_t: target mask with same shape as source mask
            mask_save_dir: the path to save the mask image
            model_type: the model type, SD or SDXL
        """
        super().__init__(start_step, start_layer, layer_idx, step_idx, total_steps, model_type)
        self.mask_s = mask_s  # source mask with shape (h, w)
        self.mask_t = mask_t  # target mask with same shape as source mask
        print("Using mask-guided MasaCtrl")
        if mask_save_dir is not None:
            os.makedirs(mask_save_dir, exist_ok=True)
            save_image(self.mask_s.unsqueeze(0).unsqueeze(0), os.path.join(mask_save_dir, "mask_s.png"))
            save_image(self.mask_t.unsqueeze(0).unsqueeze(0), os.path.join(mask_save_dir, "mask_t.png"))

    def attn_batch(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs):
        B = q.shape[0] // num_heads
        H = W = int(np.sqrt(q.shape[1]))
        q = rearrange(q, "(b h) n d -> h (b n) d", h=num_heads)
        k = rearrange(k, "(b h) n d -> h (b n) d", h=num_heads)
        v = rearrange(v, "(b h) n d -> h (b n) d", h=num_heads)

        sim = torch.einsum("h i d, h j d -> h i j", q, k) * kwargs.get("scale")
        if kwargs.get("is_mask_attn") and self.mask_s is not None:
            print("masked attention")
            mask = self.mask_s.unsqueeze(0).unsqueeze(0)
            mask = F.interpolate(mask, (H, W)).flatten(0).unsqueeze(0)
            mask = mask.flatten()
            # background
            sim_bg = sim + mask.masked_fill(mask == 1, torch.finfo(sim.dtype).min)
            # object
            sim_fg = sim + mask.masked_fill(mask == 0, torch.finfo(sim.dtype).min)
            sim = torch.cat([sim_fg, sim_bg], dim=0)
        attn = sim.softmax(-1)
        if len(attn) == 2 * len(v):
            v = torch.cat([v] * 2)
        out = torch.einsum("h i j, h j d -> h i d", attn, v)
        out = rearrange(out, "(h1 h) (b n) d -> (h1 b) n (h d)", b=B, h=num_heads)
        return out

    def forward(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs):
        """
        Attention forward function
        """
        if is_cross or self.cur_step not in self.step_idx or self.cur_att_layer // 2 not in self.layer_idx:
            return super().forward(q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs)

        B = q.shape[0] // num_heads // 2
        H = W = int(np.sqrt(q.shape[1]))
        qu, qc = q.chunk(2)
        ku, kc = k.chunk(2)
        vu, vc = v.chunk(2)
        attnu, attnc = attn.chunk(2)

        out_u_source = self.attn_batch(qu[:num_heads], ku[:num_heads], vu[:num_heads], sim[:num_heads], attnu, is_cross, place_in_unet, num_heads, **kwargs)
        out_c_source = self.attn_batch(qc[:num_heads], kc[:num_heads], vc[:num_heads], sim[:num_heads], attnc, is_cross, place_in_unet, num_heads, **kwargs)

        out_u_target = self.attn_batch(qu[-num_heads:], ku[:num_heads], vu[:num_heads], sim[:num_heads], attnu, is_cross, place_in_unet, num_heads, is_mask_attn=True, **kwargs)
        out_c_target = self.attn_batch(qc[-num_heads:], kc[:num_heads], vc[:num_heads], sim[:num_heads], attnc, is_cross, place_in_unet, num_heads, is_mask_attn=True, **kwargs)

        if self.mask_s is not None and self.mask_t is not None:
            out_u_target_fg, out_u_target_bg = out_u_target.chunk(2, 0)
            out_c_target_fg, out_c_target_bg = out_c_target.chunk(2, 0)

            mask = F.interpolate(self.mask_t.unsqueeze(0).unsqueeze(0), (H, W))
            mask = mask.reshape(-1, 1)  # (hw, 1)
            out_u_target = out_u_target_fg * mask + out_u_target_bg * (1 - mask)
            out_c_target = out_c_target_fg * mask + out_c_target_bg * (1 - mask)

        out = torch.cat([out_u_source, out_u_target, out_c_source, out_c_target], dim=0)
        return out


class MutualSelfAttentionControlMaskAuto(MutualSelfAttentionControl):
    def __init__(self, start_step=4, start_layer=10, layer_idx=None, step_idx=None, total_steps=50, thres=0.1, ref_token_idx=[1], cur_token_idx=[1], mask_save_dir=None, model_type="SD"):
        """
        MasaCtrl with mask auto generation from cross-attention map
        Args:
            start_step: the step to start mutual self-attention control
            start_layer: the layer to start mutual self-attention control
            layer_idx: list of the layers to apply mutual self-attention control
            step_idx: list the steps to apply mutual self-attention control
            total_steps: the total number of steps
            thres: the thereshold for mask thresholding
            ref_token_idx: the token index list for cross-attention map aggregation
            cur_token_idx: the token index list for cross-attention map aggregation
            mask_save_dir: the path to save the mask image
        """
        super().__init__(start_step, start_layer, layer_idx, step_idx, total_steps, model_type)
        print("Using MutualSelfAttentionControlMaskAuto")
        self.thres = thres
        self.ref_token_idx = ref_token_idx
        self.cur_token_idx = cur_token_idx

        self.self_attns = []
        self.cross_attns = []

        self.cross_attns_mask = None
        self.self_attns_mask = None

        self.mask_save_dir = mask_save_dir
        if self.mask_save_dir is not None:
            os.makedirs(self.mask_save_dir, exist_ok=True)

    def after_step(self):
        self.self_attns = []
        self.cross_attns = []

    def attn_batch(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs):
        """
        Performing attention for a batch of queries, keys, and values
        """
        B = q.shape[0] // num_heads
        H = W = int(np.sqrt(q.shape[1]))
        q = rearrange(q, "(b h) n d -> h (b n) d", h=num_heads)
        k = rearrange(k, "(b h) n d -> h (b n) d", h=num_heads)
        v = rearrange(v, "(b h) n d -> h (b n) d", h=num_heads)

        sim = torch.einsum("h i d, h j d -> h i j", q, k) * kwargs.get("scale")
        if self.self_attns_mask is not None:
            # binarize the mask
            mask = self.self_attns_mask
            thres = self.thres
            mask[mask >= thres] = 1
            mask[mask < thres] = 0
            sim_fg = sim + mask.masked_fill(mask == 0, torch.finfo(sim.dtype).min)
            sim_bg = sim + mask.masked_fill(mask == 1, torch.finfo(sim.dtype).min)
            sim = torch.cat([sim_fg, sim_bg])

        attn = sim.softmax(-1)

        if len(attn) == 2 * len(v):
            v = torch.cat([v] * 2)
        out = torch.einsum("h i j, h j d -> h i d", attn, v)
        out = rearrange(out, "(h1 h) (b n) d -> (h1 b) n (h d)", b=B, h=num_heads)
        return out

    def aggregate_cross_attn_map(self, idx):
        attn_map = torch.stack(self.cross_attns, dim=1).mean(1)  # (B, N, dim)
        B = attn_map.shape[0]
        res = int(np.sqrt(attn_map.shape[-2]))
        attn_map = attn_map.reshape(-1, res, res, attn_map.shape[-1])
        image = attn_map[..., idx]
        if isinstance(idx, list):
            image = image.sum(-1)
        image_min = image.min(dim=1, keepdim=True)[0].min(dim=2, keepdim=True)[0]
        image_max = image.max(dim=1, keepdim=True)[0].max(dim=2, keepdim=True)[0]
        image = (image - image_min) / (image_max - image_min)
        return image

    def forward(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs):
        """
        Attention forward function
        """
        if is_cross:
            # save cross attention map with res 16 * 16
            if attn.shape[1] == 16 * 16:
                self.cross_attns.append(attn.reshape(-1, num_heads, *attn.shape[-2:]).mean(1))

        if is_cross or self.cur_step not in self.step_idx or self.cur_att_layer // 2 not in self.layer_idx:
            return super().forward(q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs)

        B = q.shape[0] // num_heads // 2
        H = W = int(np.sqrt(q.shape[1]))
        qu, qc = q.chunk(2)
        ku, kc = k.chunk(2)
        vu, vc = v.chunk(2)
        attnu, attnc = attn.chunk(2)

        out_u_source = self.attn_batch(qu[:num_heads], ku[:num_heads], vu[:num_heads], sim[:num_heads], attnu, is_cross, place_in_unet, num_heads, **kwargs)
        out_c_source = self.attn_batch(qc[:num_heads], kc[:num_heads], vc[:num_heads], sim[:num_heads], attnc, is_cross, place_in_unet, num_heads, **kwargs)

        if len(self.cross_attns) == 0:
            self.self_attns_mask = None
            out_u_target = self.attn_batch(qu[-num_heads:], ku[:num_heads], vu[:num_heads], sim[:num_heads], attnu, is_cross, place_in_unet, num_heads, **kwargs)
            out_c_target = self.attn_batch(qc[-num_heads:], kc[:num_heads], vc[:num_heads], sim[:num_heads], attnc, is_cross, place_in_unet, num_heads, **kwargs)
        else:
            mask = self.aggregate_cross_attn_map(idx=self.ref_token_idx)  # (2, H, W)
            mask_source = mask[-2]  # (H, W)
            res = int(np.sqrt(q.shape[1]))
            self.self_attns_mask = F.interpolate(mask_source.unsqueeze(0).unsqueeze(0), (res, res)).flatten()
            if self.mask_save_dir is not None:
                H = W = int(np.sqrt(self.self_attns_mask.shape[0]))
                mask_image = self.self_attns_mask.reshape(H, W).unsqueeze(0)
                save_image(mask_image, os.path.join(self.mask_save_dir, f"mask_s_{self.cur_step}_{self.cur_att_layer}.png"))
            out_u_target = self.attn_batch(qu[-num_heads:], ku[:num_heads], vu[:num_heads], sim[:num_heads], attnu, is_cross, place_in_unet, num_heads, **kwargs)
            out_c_target = self.attn_batch(qc[-num_heads:], kc[:num_heads], vc[:num_heads], sim[:num_heads], attnc, is_cross, place_in_unet, num_heads, **kwargs)

        if self.self_attns_mask is not None:
            mask = self.aggregate_cross_attn_map(idx=self.cur_token_idx)  # (2, H, W)
            mask_target = mask[-1]  # (H, W)
            res = int(np.sqrt(q.shape[1]))
            spatial_mask = F.interpolate(mask_target.unsqueeze(0).unsqueeze(0), (res, res)).reshape(-1, 1)
            if self.mask_save_dir is not None:
                H = W = int(np.sqrt(spatial_mask.shape[0]))
                mask_image = spatial_mask.reshape(H, W).unsqueeze(0)
                save_image(mask_image, os.path.join(self.mask_save_dir, f"mask_t_{self.cur_step}_{self.cur_att_layer}.png"))
            # binarize the mask
            thres = self.thres
            spatial_mask[spatial_mask >= thres] = 1
            spatial_mask[spatial_mask < thres] = 0
            out_u_target_fg, out_u_target_bg = out_u_target.chunk(2)
            out_c_target_fg, out_c_target_bg = out_c_target.chunk(2)

            out_u_target = out_u_target_fg * spatial_mask + out_u_target_bg * (1 - spatial_mask)
            out_c_target = out_c_target_fg * spatial_mask + out_c_target_bg * (1 - spatial_mask)

            # set self self-attention mask to None
            self.self_attns_mask = None

        out = torch.cat([out_u_source, out_u_target, out_c_source, out_c_target], dim=0)
        return out