File size: 7,736 Bytes
b4754db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
from typing import Dict
from jaxtyping import Float

import numpy as np
import torch
from torch import Tensor
import torch.nn.functional as F

from einops import rearrange

def sph2cart(
    azi: Float[Tensor, 'B'],
    ele: Float[Tensor, 'B'],
    r: Float[Tensor, 'B']
) -> Float[Tensor, 'B 3']:
    # z-up, y-right, x-back
    rcos = r * torch.cos(ele)
    pos_cart = torch.stack([
        rcos * torch.cos(azi),
        rcos * torch.sin(azi),
        r * torch.sin(ele)
    ], dim=1)

    return pos_cart

def get_viewport_matrix(
    width: int,
    height: int,
    batch_size: int=1,
    device: torch.device=None,
) -> Float[Tensor, 'B 4 4']:
    N = torch.tensor(
        [[width/2, 0, 0, width/2],
        [0, height/2, 0, height/2],
        [0, 0, 1/2, 1/2],
        [0, 0, 0, 1]],
        dtype=torch.float32,
        device=device
    )[None].repeat(batch_size, 1, 1)
    return N

def get_projection_matrix(
    fovy: Float[Tensor, 'B'],
    aspect_wh: float,
    near: float,
    far: float
) -> Float[Tensor, 'B 4 4']:
    batch_size = fovy.shape[0]
    proj_mtx = torch.zeros(batch_size, 4, 4, dtype=torch.float32)
    proj_mtx[:, 0, 0] = 1.0 / (torch.tan(fovy / 2.0) * aspect_wh)
    proj_mtx[:, 1, 1] = -1.0 / torch.tan(
        fovy / 2.0
    )  # add a negative sign here as the y axis is flipped in nvdiffrast output
    proj_mtx[:, 2, 2] = -(far + near) / (far - near)
    proj_mtx[:, 2, 3] = -2.0 * far * near / (far - near)
    proj_mtx[:, 3, 2] = -1.0
    return proj_mtx

def camera_lookat(
    eye: Float[Tensor, 'B 3'],
    target: Float[Tensor, 'B 3'],
    up: Float[Tensor, 'B 3']
) -> Float[Tensor, 'B 4 4']:
    B = eye.shape[0]
    f = F.normalize(eye - target)
    l = F.normalize(torch.linalg.cross(up, f))
    u = F.normalize(torch.linalg.cross(f, l))

    R = torch.stack((l, u, f), dim=1)  # B 3 3
    M_R = torch.eye(4, dtype=torch.float32)[None].repeat((B, 1, 1))
    M_R[..., :3, :3] = R

    T = - eye
    M_T = torch.eye(4, dtype=torch.float32)[None].repeat((B, 1, 1))
    M_T[..., :3, 3] = T

    return (M_R @ M_T).to(dtype=torch.float32)

def focal_length_to_fov(
    focal_length: float,
    censor_length: float = 24.
) -> float:
    return 2 * np.arctan(censor_length / focal_length / 2.)

def forward_warper(
    image: Float[Tensor, 'B C H W'],
    screen: Float[Tensor, 'B (H W) 2'],
    pcd: Float[Tensor, 'B (H W) 4'],
    mvp_mtx: Float[Tensor, 'B 4 4'],
    viewport_mtx: Float[Tensor, 'B 4 4'],
    alpha: float = 0.5
) -> Dict[str, Tensor]:
    H, W = image.shape[2:4]

    # Projection.
    points_c = pcd @ mvp_mtx.mT
    points_ndc = points_c / points_c[..., 3:4]
    # To screen.
    coords_new = points_ndc @ viewport_mtx.mT

    # Masking invalid pixels.
    invalid = coords_new[..., 2] <= 0
    coords_new[invalid] = -1000000 if coords_new.dtype == torch.float32 else -1e+4

    new_z = points_c[..., 2:3]
    flow = coords_new[..., :2] - screen[..., :2]
    ## Importance.
    importance = alpha / new_z
    importance -= importance.amin((1, 2), keepdim=True)
    importance /= importance.amax((1, 2), keepdim=True) + 1e-6
    importance = importance * 10 - 10
    ## Rearrange.
    importance = rearrange(importance, 'b (h w) c -> b c h w', h=H, w=W)
    flow = rearrange(flow, 'b (h w) c -> b c h w', h=H, w=W)

    # Splatting.
    warped = splatting_function('softmax', image, flow, importance, eps=1e-6)
    ## mask is 1 where there is no splat
    mask = (warped == 0.).all(dim=1, keepdim=True).to(image.dtype)
    flow2 = rearrange(coords_new[..., :2], 'b (h w) c -> b c h w', h=H, w=W)

    output = dict(
        warped=warped,
        mask=mask,
        correspondence=flow2
    )

    return output


def convert_left_to_right(left_embed, disparity, left_image, random_ratio=None):
    # Get the height, width, and channels from the left embedding
    _, height, width = left_embed.shape

    # Initialize tensors for right_embed, converted_right_image, and mask
    # right_embed = torch.full_like(left_embed, 255)
    # converted_right_image = torch.full_like(left_image, 255)
    right_embed = torch.ones_like(left_embed)
    converted_right_image = torch.ones_like(left_image)    
    mask = torch.ones((height, width), dtype=torch.uint8, device=left_embed.device)

    # Round the disparity and convert to int
    disparity_rounded = torch.round(disparity).squeeze(0).long()  # [h, w]

    # Loop through the image dimensions and apply the conversion
    for y in range(height):
        for x in range(width):
            new_x = x - disparity_rounded[y, x]

            if 0 <= new_x < width:# and disparity_rounded[y, x] > 0:
                right_embed[:, y, new_x] = left_embed[:, y, x]
                converted_right_image[:, y, new_x] = left_image[:, y, x]
                mask[y, new_x] = 0  # Mark as valid in the mask
    # print(f"Mask sum before: {mask.sum()}")
    # Apply random mask if drop_ratio is set
    if random_ratio is not None:
        print(f"Random ratio: {random_ratio}")
        # Create a random mask with values ranging from 0 (invalid) to 1 (valid)
        random_mask = torch.bernoulli(torch.full((height, width), 1 - random_ratio, device=left_embed.device)).byte()
        # Perform a logical AND operation with the mask from the function
        mask = mask | random_mask

        # Apply the final mask to right_embed, converted_right_image, and disparity
        right_embed[:, mask == 1] = 255  # Set masked out locations to 255 in the right embed
        converted_right_image[:, mask == 1] = 255  # Set masked out locations to 255 in the converted right image
        disparity[:, mask == 1] = 0  # Set masked out locations in the original disparity to 0
        # print(f"Mask sum after: {mask.sum()}")
    return right_embed, mask, converted_right_image, disparity


def convert_left_to_right_torch(left_embed, disparity, left_image, random_ratio=None):
    """
    Convert left features to right features based on disparity values.
    
    Args:
        left_embed (torch.Tensor): [c, h, w] tensor representing left feature embeddings.
        disparity (torch.Tensor): [1, h, w] tensor of disparity values.
        left_image (torch.Tensor): [3, h, w] tensor representing the left image.

    Returns:
        right_embed (torch.Tensor): [c, h, w] tensor for the right feature embeddings.
        mask (torch.Tensor): [h, w] binary mask (1 = invalid, 0 = valid).
        converted_right_image (torch.Tensor): [3, h, w] tensor for the right image.
        disparity (torch.Tensor): [1, h, w] tensor for the disparity.
    """
    # Get the height, width, and channels from the left embedding
    _, height, width = left_embed.shape

    # Initialize tensors for right_embed, converted_right_image, and mask
    right_embed = torch.zeros_like(left_embed)
    # converted_right_image = torch.zeros_like(left_image)
    converted_right_image = -torch.ones_like(left_image)
    mask = torch.ones((height, width), dtype=torch.uint8, device=left_embed.device)

    # Round the disparity and convert to int
    disparity_rounded = torch.round(disparity).squeeze(0).long()  # [h, w]

    # Iterate over width and process each column for all rows
    for x in range(width):
        new_x = x - disparity_rounded[:, x]

        valid_indices = (new_x >= 0) & (new_x < width) #& (disparity_rounded[:, x] > 0)
        valid_new_x = new_x[valid_indices]
        valid_y = torch.arange(height, device=left_embed.device)[valid_indices]

        right_embed[:, valid_y, valid_new_x] = left_embed[:, valid_y, x]
        converted_right_image[:, valid_y, valid_new_x] = left_image[:, valid_y, x]
        mask[valid_y, valid_new_x] = 0  # Mark as valid in the mask

    return right_embed, mask, converted_right_image, disparity