File size: 5,659 Bytes
7329ede
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3420fc
7329ede
 
cc9d6b9
4ad732a
7329ede
 
 
 
 
 
 
 
 
 
bf3cff0
7329ede
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
from diffusers import utils
from diffusers.utils import deprecation_utils
from diffusers.models import cross_attention
utils.deprecate = lambda *arg, **kwargs: None
deprecation_utils.deprecate = lambda *arg, **kwargs: None
cross_attention.deprecate = lambda *arg, **kwargs: None

import os
import sys
'''
MAIN_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), '..'))
sys.path.insert(0, MAIN_DIR)
os.chdir(MAIN_DIR)
'''

import gradio as gr
import numpy as np
import torch
import random

from annotator.util import resize_image, HWC3
from annotator.canny import CannyDetector
from diffusers.models.unet_2d_condition import UNet2DConditionModel
from diffusers.pipelines import DiffusionPipeline
from diffusers.schedulers import DPMSolverMultistepScheduler
from models import ControlLoRA, ControlLoRACrossAttnProcessor

apply_canny = CannyDetector()

device = 'cuda' if torch.cuda.is_available() else 'cpu'

pipeline = DiffusionPipeline.from_pretrained(
    'IDEA-CCNL/Taiyi-Stable-Diffusion-1B-Chinese-v0.1', safety_checker=None
)
pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config)
pipeline = pipeline.to(device)
unet: UNet2DConditionModel = pipeline.unet

#ckpt_path = "ckpts/sd-diffusiondb-canny-model-control-lora-zh"
ckpt_path = "svjack/canny-control-lora-zh"
control_lora = ControlLoRA.from_pretrained(ckpt_path)
control_lora = control_lora.to(device)

# load control lora attention processors
lora_attn_procs = {}
lora_layers_list = list([list(layer_list) for layer_list in control_lora.lora_layers])
n_ch = len(unet.config.block_out_channels)
control_ids = [i for i in range(n_ch)]
for name in pipeline.unet.attn_processors.keys():
    cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
    if name.startswith("mid_block"):
        control_id = control_ids[-1]
    elif name.startswith("up_blocks"):
        block_id = int(name[len("up_blocks.")])
        control_id = list(reversed(control_ids))[block_id]
    elif name.startswith("down_blocks"):
        block_id = int(name[len("down_blocks.")])
        control_id = control_ids[block_id]

    lora_layers = lora_layers_list[control_id]
    if len(lora_layers) != 0:
        lora_layer: ControlLoRACrossAttnProcessor = lora_layers.pop(0)
        lora_attn_procs[name] = lora_layer

unet.set_attn_processor(lora_attn_procs)


def process(input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, sample_steps, scale, seed, eta, low_threshold, high_threshold):
    with torch.no_grad():
        img = resize_image(HWC3(input_image), image_resolution)
        H, W, C = img.shape

        detected_map = apply_canny(img, low_threshold, high_threshold)
        detected_map = HWC3(detected_map)

        control = torch.from_numpy(detected_map[...,::-1].copy().transpose([2,0,1])).float().to(device)[None] / 127.5 - 1
        _ = control_lora(control).control_states

        if seed == -1:
            seed = random.randint(0, 65535)

        # run inference
        generator = torch.Generator(device=device).manual_seed(seed)
        images = []
        for i in range(num_samples):
            _ = control_lora(control).control_states
            image = pipeline(
                prompt + ', ' + a_prompt, negative_prompt=n_prompt,
                num_inference_steps=sample_steps, guidance_scale=scale, eta=eta,
                generator=generator, height=H, width=W).images[0]
            images.append(np.asarray(image))

        results = images
    return [255 - detected_map] + results


block = gr.Blocks().queue()
with block:
    with gr.Row():
        gr.Markdown("## Control Stable Diffusion with Canny Edge Maps")
        gr.Markdown("This _example_ was **drive** from <br/><b><h4>[https://github.com/svjack/ControlLoRA-Chinese](https://github.com/svjack/ControlLoRA-Chinese)</h4></b>\n")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(source='upload', type="numpy", value = "dog.png")
            prompt = gr.Textbox(label="Prompt", value = "卡通狗")
            run_button = gr.Button(label="Run")
            with gr.Accordion("Advanced options", open=False):
                num_samples = gr.Slider(label="Images", minimum=1, maximum=12, value=1, step=1)
                image_resolution = gr.Slider(label="Image Resolution", minimum=256, maximum=768, value=512, step=256)
                low_threshold = gr.Slider(label="Canny low threshold", minimum=1, maximum=255, value=100, step=1)
                high_threshold = gr.Slider(label="Canny high threshold", minimum=1, maximum=255, value=200, step=1)
                sample_steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=20, step=1)
                scale = gr.Slider(label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
                seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
                eta = gr.Number(label="eta", value=0.0)
                a_prompt = gr.Textbox(label="Added Prompt", value='')
                n_prompt = gr.Textbox(label="Negative Prompt",
                                      value='低质量,模糊,混乱')
        with gr.Column():
            result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
    ips = [input_image, prompt, a_prompt, n_prompt, num_samples, image_resolution, sample_steps, scale, seed, eta, low_threshold, high_threshold]
    run_button.click(fn=process, inputs=ips, outputs=[result_gallery])


block.launch(server_name='0.0.0.0')

#### block.launch(server_name='172.16.202.228', share=True)