File size: 8,903 Bytes
983d072
b9e7f35
 
 
 
 
983d072
56db3b1
1df484a
56db3b1
1df484a
56db3b1
 
1df484a
 
56db3b1
 
090dbc6
 
56db3b1
 
 
 
 
8240412
 
 
56db3b1
 
 
 
 
8240412
56db3b1
08a7509
 
7134d92
08a7509
 
 
 
8d68db5
7134d92
08a7509
 
ed3c757
 
08a7509
 
f34cbc2
08a7509
 
 
 
 
 
7134d92
08a7509
 
 
 
 
 
7b9ab38
7134d92
 
 
08a7509
 
 
 
56db3b1
 
08a7509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9e7f35
 
 
 
 
 
 
 
d633848
 
 
 
 
 
544b4ee
 
d633848
544b4ee
 
 
d633848
 
544b4ee
 
d633848
 
 
 
 
 
 
 
 
544b4ee
 
d633848
 
 
 
544b4ee
 
 
 
d633848
 
 
 
 
 
544b4ee
 
d633848
 
544b4ee
 
d633848
 
544b4ee
 
d633848
544b4ee
d633848
544b4ee
 
 
d633848
544b4ee
d633848
544b4ee
 
 
 
 
 
 
d633848
544b4ee
 
 
 
 
 
 
 
 
d633848
 
 
544b4ee
 
d633848
 
 
544b4ee
 
d633848
 
 
 
 
 
 
 
544b4ee
9ce81f8
 
08a7509
 
 
 
56db3b1
08a7509
b9e7f35
08a7509
 
 
 
090dbc6
08a7509
56db3b1
 
6d7f7ae
 
090dbc6
6d7f7ae
 
 
d237c9b
8240412
 
 
08a7509
b9e7f35
 
08a7509
b9e7f35
 
08a7509
b9e7f35
08a7509
56db3b1
 
b9e7f35
08a7509
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
import gradio as gr
import requests
import io
import random
import os
from PIL import Image

from datasets import load_dataset
import pandas as pd

'''
dataset = load_dataset("Gustavosta/Stable-Diffusion-Prompts")
prompt_df = dataset["train"].to_pandas()
'''
prompt_df = pd.read_csv("Stable-Diffusion-Prompts.csv")

#DEFAULT_MODEL = "stabilityai/stable-diffusion-2-1"
#DEFAULT_PROMPT = "1girl, aqua eyes, baseball cap, blonde hair, closed mouth, earrings, green background, hat, hoop earrings, jewelry, looking at viewer, shirt, short hair, simple background, solo, upper body, yellow shirt"
DEFAULT_PROMPT = "house"

def get_samples():
    prompt_list = prompt_df.sample(n = 10)["Prompt"].map(lambda x: x).values.tolist()
    return prompt_list

def update_prompts():
    return gr.Dropdown.update(choices=get_samples())

def get_params(request: gr.Request):
    params = request.query_params
    ip = request.client.host
    req = {"params": params,
          "ip": ip}
    return update_prompts()

list_models = [
    "SDXL-1.0",
    "SD-1.5",
    "OpenJourney-V4",
    "Anything-V4",
    "Disney-Pixar-Cartoon",
    "Pixel-Art-XL",
    "Dalle-3-XL",
    "Midjourney-V4-XL",
]

list_prompts = get_samples()

def generate_txt2img(current_model, prompt, is_negative=False, image_style="None style", steps=50, cfg_scale=7,
                     seed=None):
    print("call {} {} one time".format(current_model, prompt))

    if current_model == "SD-1.5":
        API_URL = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5"
    elif current_model == "SDXL-1.0":
        API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
    elif current_model == "OpenJourney-V4":
        API_URL = "https://api-inference.huggingface.co/models/prompthero/openjourney"       
    elif current_model == "Anything-V4":
        API_URL = "https://api-inference.huggingface.co/models/xyn-ai/anything-v4.0" 
    elif current_model == "Disney-Pixar-Cartoon":
        API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/disney-pixar-cartoon"
    elif current_model == "Pixel-Art-XL":
        API_URL = "https://api-inference.huggingface.co/models/nerijs/pixel-art-xl"
    elif current_model == "Dalle-3-XL":
        API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl"
    elif current_model == "Midjourney-V4-XL":
        API_URL = "https://api-inference.huggingface.co/models/openskyml/midjourney-v4-xl"    

    API_TOKEN = os.environ.get("HF_READ_TOKEN")
    headers = {"Authorization": f"Bearer {API_TOKEN}"}

    if type(prompt) != type(""):
        prompt = DEFAULT_PROMPT

    if image_style == "None style":
        payload = {
            "inputs": prompt + ", 8k",
            "is_negative": is_negative,
            "steps": steps,
            "cfg_scale": cfg_scale,
            "seed": seed if seed is not None else random.randint(-1, 2147483647)
        }
    elif image_style == "Cinematic":
        payload = {
            "inputs": prompt + ", realistic, detailed, textured, skin, hair, eyes, by Alex Huguet, Mike Hill, Ian Spriggs, JaeCheol Park, Marek Denko",
            "is_negative": is_negative + ", abstract, cartoon, stylized",
            "steps": steps,
            "cfg_scale": cfg_scale,
            "seed": seed if seed is not None else random.randint(-1, 2147483647)
        }
    elif image_style == "Digital Art":
        payload = {
            "inputs": prompt + ", faded , vintage , nostalgic , by Jose Villa , Elizabeth Messina , Ryan Brenizer , Jonas Peterson , Jasmine Star",
            "is_negative": is_negative + ", sharp , modern , bright",
            "steps": steps,
            "cfg_scale": cfg_scale,
            "seed": seed if seed is not None else random.randint(-1, 2147483647)
        }
    elif image_style == "Portrait":
        payload = {
            "inputs": prompt + ", soft light, sharp, exposure blend, medium shot, bokeh, (hdr:1.4), high contrast, (cinematic, teal and orange:0.85), (muted colors, dim colors, soothing tones:1.3), low saturation, (hyperdetailed:1.2), (noir:0.4), (natural skin texture, hyperrealism, soft light, sharp:1.2)",
            "is_negative": is_negative,
            "steps": steps,
            "cfg_scale": cfg_scale,
            "seed": seed if seed is not None else random.randint(-1, 2147483647)
        }

    image_bytes = requests.post(API_URL, headers=headers, json=payload).content
    image = Image.open(io.BytesIO(image_bytes))
    return image


css = """
/* General Container Styles */
.gradio-container {
    font-family: 'IBM Plex Sans', sans-serif;
    max-width: 730px !important;
    margin: auto;
    padding-top: 1.5rem;
}

/* Button Styles */
.gr-button {
    color: white;
    border-color: black;
    background: black;
    white-space: nowrap;
}

.gr-button:focus {
    border-color: rgb(147 197 253 / var(--tw-border-opacity));
    outline: none;
    box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
    --tw-border-opacity: 1;
    --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
    --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
    --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
    --tw-ring-opacity: .5;
}

/* Footer Styles */
.footer, .dark .footer {
    margin-bottom: 45px;
    margin-top: 35px;
    text-align: center;
    border-bottom: 1px solid #e5e5e5;
}

.footer > p, .dark .footer > p {
    font-size: .8rem;
    display: inline-block;
    padding: 0 10px;
    transform: translateY(10px);
    background: white;
}

.dark .footer {
    border-color: #303030;
}

.dark .footer > p {
    background: #0b0f19;
}

/* Share Button Styles */
#share-btn-container {
    padding: 0 0.5rem !important;
    background-color: #000000;
    justify-content: center;
    align-items: center;
    border-radius: 9999px !important;
    max-width: 13rem;
    margin-left: auto;
}

#share-btn-container:hover {
    background-color: #060606;
}

#share-btn {
    all: initial;
    color: #ffffff;
    font-weight: 600;
    cursor: pointer;
    font-family: 'IBM Plex Sans', sans-serif;
    margin-left: 0.5rem !important;
    padding: 0.5rem !important;
    right: 0;
}

/* Animation Styles */
.animate-spin {
    animation: spin 1s linear infinite;
}

@keyframes spin {
    from { transform: rotate(0deg); }
    to { transform: rotate(360deg); }
}

/* Other Styles */
#gallery {
    min-height: 22rem;
    margin-bottom: 15px;
    margin-left: auto;
    margin-right: auto;
    border-bottom-right-radius: .5rem !important;
    border-bottom-left-radius: .5rem !important;
}
"""

with gr.Blocks(css=css) as demo:
    
    favicon = '<img src="" width="48px" style="display: inline">'
    gr.Markdown(
        f"""<h1><center>🌻{favicon} AI Diffusion</center></h1>
            """
    )
    with gr.Row(elem_id="prompt-container"):
        current_model = gr.Dropdown(label="Current Model", choices=list_models, value=list_models[1])
        
    with gr.Row(elem_id="prompt-container"):
        text_prompt = gr.Textbox(label="Prompt", placeholder=DEFAULT_PROMPT, lines=1, elem_id="prompt-text-input", value = DEFAULT_PROMPT)
        text_button = gr.Button("Generate", variant='primary', elem_id="gen-button")

    with gr.Row("prompt-container"):
        with gr.Row():
            select_prompt = gr.Dropdown(label="Prompt selected", choices=list_prompts, 
                                       value = DEFAULT_PROMPT,
                                       info = "default prompt: {}".format(DEFAULT_PROMPT)
                                       )
            select_button = gr.Button("Select Prompt Generate", variant='primary', elem_id="gen-button")
    with gr.Row("prompt-container"):
        btn_refresh = gr.Button(value="Click to get newly Prompt candidates")
        #btn_refresh.click(None, js="window.location.reload()")
        btn_refresh.click(update_prompts, None, select_prompt)
        
    with gr.Row():
        image_output = gr.Image(type="pil", label="Output Image", elem_id="gallery")
        
    with gr.Accordion("Advanced settings", open=False):
        negative_prompt = gr.Textbox(label="Negative Prompt", value="text, blurry, fuzziness", lines=1, elem_id="negative-prompt-text-input")
        image_style = gr.Dropdown(label="Style", choices=["None style", "Cinematic", "Digital Art", "Portrait"], value="None style", allow_custom_value=False)

    text_button.click(generate_txt2img, inputs=[current_model, text_prompt, negative_prompt, image_style], outputs=image_output)
    select_button.click(generate_txt2img, inputs=[current_model, select_prompt, negative_prompt, image_style], outputs=image_output)
    demo.load(get_params, None, select_prompt)

demo.launch(show_api=False)