Spaces:
Sleeping
Sleeping
File size: 8,903 Bytes
983d072 b9e7f35 983d072 56db3b1 1df484a 56db3b1 1df484a 56db3b1 1df484a 56db3b1 090dbc6 56db3b1 8240412 56db3b1 8240412 56db3b1 08a7509 7134d92 08a7509 8d68db5 7134d92 08a7509 ed3c757 08a7509 f34cbc2 08a7509 7134d92 08a7509 7b9ab38 7134d92 08a7509 56db3b1 08a7509 b9e7f35 d633848 544b4ee d633848 544b4ee d633848 544b4ee d633848 544b4ee d633848 544b4ee d633848 544b4ee d633848 544b4ee d633848 544b4ee d633848 544b4ee d633848 544b4ee d633848 544b4ee d633848 544b4ee d633848 544b4ee d633848 544b4ee d633848 544b4ee d633848 544b4ee 9ce81f8 08a7509 56db3b1 08a7509 b9e7f35 08a7509 090dbc6 08a7509 56db3b1 6d7f7ae 090dbc6 6d7f7ae d237c9b 8240412 08a7509 b9e7f35 08a7509 b9e7f35 08a7509 b9e7f35 08a7509 56db3b1 b9e7f35 08a7509 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import gradio as gr
import requests
import io
import random
import os
from PIL import Image
from datasets import load_dataset
import pandas as pd
'''
dataset = load_dataset("Gustavosta/Stable-Diffusion-Prompts")
prompt_df = dataset["train"].to_pandas()
'''
prompt_df = pd.read_csv("Stable-Diffusion-Prompts.csv")
#DEFAULT_MODEL = "stabilityai/stable-diffusion-2-1"
#DEFAULT_PROMPT = "1girl, aqua eyes, baseball cap, blonde hair, closed mouth, earrings, green background, hat, hoop earrings, jewelry, looking at viewer, shirt, short hair, simple background, solo, upper body, yellow shirt"
DEFAULT_PROMPT = "house"
def get_samples():
prompt_list = prompt_df.sample(n = 10)["Prompt"].map(lambda x: x).values.tolist()
return prompt_list
def update_prompts():
return gr.Dropdown.update(choices=get_samples())
def get_params(request: gr.Request):
params = request.query_params
ip = request.client.host
req = {"params": params,
"ip": ip}
return update_prompts()
list_models = [
"SDXL-1.0",
"SD-1.5",
"OpenJourney-V4",
"Anything-V4",
"Disney-Pixar-Cartoon",
"Pixel-Art-XL",
"Dalle-3-XL",
"Midjourney-V4-XL",
]
list_prompts = get_samples()
def generate_txt2img(current_model, prompt, is_negative=False, image_style="None style", steps=50, cfg_scale=7,
seed=None):
print("call {} {} one time".format(current_model, prompt))
if current_model == "SD-1.5":
API_URL = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5"
elif current_model == "SDXL-1.0":
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
elif current_model == "OpenJourney-V4":
API_URL = "https://api-inference.huggingface.co/models/prompthero/openjourney"
elif current_model == "Anything-V4":
API_URL = "https://api-inference.huggingface.co/models/xyn-ai/anything-v4.0"
elif current_model == "Disney-Pixar-Cartoon":
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/disney-pixar-cartoon"
elif current_model == "Pixel-Art-XL":
API_URL = "https://api-inference.huggingface.co/models/nerijs/pixel-art-xl"
elif current_model == "Dalle-3-XL":
API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl"
elif current_model == "Midjourney-V4-XL":
API_URL = "https://api-inference.huggingface.co/models/openskyml/midjourney-v4-xl"
API_TOKEN = os.environ.get("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
if type(prompt) != type(""):
prompt = DEFAULT_PROMPT
if image_style == "None style":
payload = {
"inputs": prompt + ", 8k",
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Cinematic":
payload = {
"inputs": prompt + ", realistic, detailed, textured, skin, hair, eyes, by Alex Huguet, Mike Hill, Ian Spriggs, JaeCheol Park, Marek Denko",
"is_negative": is_negative + ", abstract, cartoon, stylized",
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Digital Art":
payload = {
"inputs": prompt + ", faded , vintage , nostalgic , by Jose Villa , Elizabeth Messina , Ryan Brenizer , Jonas Peterson , Jasmine Star",
"is_negative": is_negative + ", sharp , modern , bright",
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Portrait":
payload = {
"inputs": prompt + ", soft light, sharp, exposure blend, medium shot, bokeh, (hdr:1.4), high contrast, (cinematic, teal and orange:0.85), (muted colors, dim colors, soothing tones:1.3), low saturation, (hyperdetailed:1.2), (noir:0.4), (natural skin texture, hyperrealism, soft light, sharp:1.2)",
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
image_bytes = requests.post(API_URL, headers=headers, json=payload).content
image = Image.open(io.BytesIO(image_bytes))
return image
css = """
/* General Container Styles */
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
max-width: 730px !important;
margin: auto;
padding-top: 1.5rem;
}
/* Button Styles */
.gr-button {
color: white;
border-color: black;
background: black;
white-space: nowrap;
}
.gr-button:focus {
border-color: rgb(147 197 253 / var(--tw-border-opacity));
outline: none;
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
--tw-border-opacity: 1;
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
--tw-ring-opacity: .5;
}
/* Footer Styles */
.footer, .dark .footer {
margin-bottom: 45px;
margin-top: 35px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}
.footer > p, .dark .footer > p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}
.dark .footer {
border-color: #303030;
}
.dark .footer > p {
background: #0b0f19;
}
/* Share Button Styles */
#share-btn-container {
padding: 0 0.5rem !important;
background-color: #000000;
justify-content: center;
align-items: center;
border-radius: 9999px !important;
max-width: 13rem;
margin-left: auto;
}
#share-btn-container:hover {
background-color: #060606;
}
#share-btn {
all: initial;
color: #ffffff;
font-weight: 600;
cursor: pointer;
font-family: 'IBM Plex Sans', sans-serif;
margin-left: 0.5rem !important;
padding: 0.5rem !important;
right: 0;
}
/* Animation Styles */
.animate-spin {
animation: spin 1s linear infinite;
}
@keyframes spin {
from { transform: rotate(0deg); }
to { transform: rotate(360deg); }
}
/* Other Styles */
#gallery {
min-height: 22rem;
margin-bottom: 15px;
margin-left: auto;
margin-right: auto;
border-bottom-right-radius: .5rem !important;
border-bottom-left-radius: .5rem !important;
}
"""
with gr.Blocks(css=css) as demo:
favicon = '<img src="" width="48px" style="display: inline">'
gr.Markdown(
f"""<h1><center>🌻{favicon} AI Diffusion</center></h1>
"""
)
with gr.Row(elem_id="prompt-container"):
current_model = gr.Dropdown(label="Current Model", choices=list_models, value=list_models[1])
with gr.Row(elem_id="prompt-container"):
text_prompt = gr.Textbox(label="Prompt", placeholder=DEFAULT_PROMPT, lines=1, elem_id="prompt-text-input", value = DEFAULT_PROMPT)
text_button = gr.Button("Generate", variant='primary', elem_id="gen-button")
with gr.Row("prompt-container"):
with gr.Row():
select_prompt = gr.Dropdown(label="Prompt selected", choices=list_prompts,
value = DEFAULT_PROMPT,
info = "default prompt: {}".format(DEFAULT_PROMPT)
)
select_button = gr.Button("Select Prompt Generate", variant='primary', elem_id="gen-button")
with gr.Row("prompt-container"):
btn_refresh = gr.Button(value="Click to get newly Prompt candidates")
#btn_refresh.click(None, js="window.location.reload()")
btn_refresh.click(update_prompts, None, select_prompt)
with gr.Row():
image_output = gr.Image(type="pil", label="Output Image", elem_id="gallery")
with gr.Accordion("Advanced settings", open=False):
negative_prompt = gr.Textbox(label="Negative Prompt", value="text, blurry, fuzziness", lines=1, elem_id="negative-prompt-text-input")
image_style = gr.Dropdown(label="Style", choices=["None style", "Cinematic", "Digital Art", "Portrait"], value="None style", allow_custom_value=False)
text_button.click(generate_txt2img, inputs=[current_model, text_prompt, negative_prompt, image_style], outputs=image_output)
select_button.click(generate_txt2img, inputs=[current_model, select_prompt, negative_prompt, image_style], outputs=image_output)
demo.load(get_params, None, select_prompt)
demo.launch(show_api=False) |