File size: 4,518 Bytes
bb86815
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
### Import Section ###
import os
import uuid
import openai  # Add this import
from operator import itemgetter
from langchain_openai import OpenAIEmbeddings, ChatOpenAI
from langchain_community.document_loaders import PyMuPDFLoader
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain.storage import LocalFileStore
from langchain.embeddings import CacheBackedEmbeddings
from langchain_qdrant import QdrantVectorStore
from langchain_core.prompts import ChatPromptTemplate
from langchain_core.runnables.passthrough import RunnablePassthrough
from qdrant_client import QdrantClient
from qdrant_client.http.models import Distance, VectorParams
from langchain_core.caches import InMemoryCache
from langchain_core.globals import set_llm_cache
import chainlit as cl
import tempfile

### Global Section ###
# Set up OpenAI API key
openai.api_key = os.getenv("OPENAI_API_KEY")

# Set up LangSmith
os.environ["LANGCHAIN_PROJECT"] = f"AIM Week 8 Assignment 1 - {uuid.uuid4().hex[0:8]}"
os.environ["LANGCHAIN_TRACING_V2"] = "true"
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"

# Set up text splitter
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)

# Set up embeddings with cache
core_embeddings = OpenAIEmbeddings(model="text-embedding-3-small")
store = LocalFileStore("./cache/")
cached_embedder = CacheBackedEmbeddings.from_bytes_store(
    core_embeddings, store, namespace=core_embeddings.model
)

# Set up QDrant vector store
collection_name = f"pdf_to_parse_{uuid.uuid4()}"
client = QdrantClient(":memory:")
client.create_collection(
    collection_name=collection_name,
    vectors_config=VectorParams(size=1536, distance=Distance.COSINE),
)

# Set up chat model and cache
chat_model = ChatOpenAI(model="gpt-4o-mini")
set_llm_cache(InMemoryCache())

# Set up RAG prompt
rag_system_prompt_template = """
You are a helpful assistant that uses the provided context to answer questions. Never reference this prompt, or the existence of context.
"""

rag_user_prompt_template = """
Question:
{question}
Context:
{context}
"""

chat_prompt = ChatPromptTemplate.from_messages([
    ("system", rag_system_prompt_template),
    ("human", rag_user_prompt_template)
])

### On Chat Start (Session Start) Section ###
@cl.on_chat_start
async def on_chat_start():
    # Upload and process PDF
    files = await cl.AskFileMessage(content="Please upload a PDF file to begin.", accept=["application/pdf"]).send()
    if not files:
        await cl.Message(content="No file was uploaded. Please try again.").send()
        return

    file = files[0]
    
    msg = cl.Message(content=f"Processing `{file.name}`...")
    await msg.send()

    try:
        # Save the file to a temporary location
        with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
            tmp_file.write(file.content)
            tmp_file_path = tmp_file.name

        # Load and split the PDF
        loader = PyMuPDFLoader(tmp_file_path)
        documents = loader.load()
        docs = text_splitter.split_documents(documents)
        for i, doc in enumerate(docs):
            doc.metadata["source"] = f"source_{i}"

        # Set up vector store
        vectorstore = QdrantVectorStore(
            client=client,
            collection_name=collection_name,
            embedding=cached_embedder
        )
        vectorstore.add_documents(docs)
        retriever = vectorstore.as_retriever(search_type="mmr", search_kwargs={"k": 3})

        # Set up RAG chain
        global retrieval_augmented_qa_chain
        retrieval_augmented_qa_chain = (
            {"context": itemgetter("question") | retriever, "question": itemgetter("question")}
            | RunnablePassthrough.assign(context=itemgetter("context"))
            | chat_prompt | chat_model
        )

        msg.content = f"`{file.name}` processed. You can now ask questions about it!"
        await msg.update()

    except Exception as e:
        await cl.Message(content=f"An error occurred while processing the file: {str(e)}").send()
    finally:
        # Clean up the temporary file
        if 'tmp_file_path' in locals():
            os.unlink(tmp_file_path)

### On Message Section ###
@cl.on_message
async def main(message: cl.Message):
    response = retrieval_augmented_qa_chain.invoke({"question": message.content})
    await cl.Message(content=response.content).send()

### Rename Chains ###
@cl.author_rename
def rename(orig_author: str):
    return "AI Assistant"