Spaces:
Runtime error
Runtime error
File size: 1,425 Bytes
8aaa5db fa34948 8aaa5db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
import streamlit as st
#As Langchain team has been working aggresively on improving the tool, we can see a lot of changes happening every weeek,
#As a part of it, the below import has been depreciated
#from langchain.chat_models import ChatOpenAI
#New import from langchain, which replaces the above
from langchain_openai import ChatOpenAI
#import os
#os.environ["OPENAI_API_KEY"] = "sk-PLfFw23dd932dfg34446dftyvvdfgdfgmvXr2dL8hVowXdt"
from langchain.schema import (
AIMessage,
HumanMessage,
SystemMessage
)
# From here down is all the StreamLit UI
st.set_page_config(page_title="LangChain Demo", page_icon=":robot:")
st.header("Hey, I'm your PERSONAL GPT")
if "sessionMessages" not in st.session_state:
st.session_state.sessionMessages = [
SystemMessage(content="You are a helpful assistant.")
]
def load_answer(question):
st.session_state.sessionMessages.append(HumanMessage(content=question))
assistant_answer = chat.invoke(st.session_state.sessionMessages )
st.session_state.sessionMessages.append(AIMessage(content=assistant_answer.content))
return assistant_answer.content
def get_text():
input_text = st.text_input("You: ")
return input_text
chat = ChatOpenAI(temperature=0)
user_input=get_text()
submit = st.button('Generate')
if submit:
response = load_answer(user_input)
st.subheader("Answer:")
st.write(response)
|