Spaces:
Runtime error
Runtime error
File size: 5,252 Bytes
4a7978f 73502e6 4a7978f 7239d24 4a7978f 8e6cdcd 5da027f b7cfa06 7239d24 2ebe433 7239d24 2ebe433 5da027f 7239d24 5da027f b7cfa06 7239d24 2ebe433 5da027f 7239d24 5da027f b7cfa06 7239d24 2ebe433 5da027f 4a7978f 7540b2d 4a7978f 5875d0d 4a7978f 5875d0d 7239d24 4a7978f 0a59d63 4a7978f 7239d24 36b59ae 7239d24 d7bfc23 8f48e7b 6127de1 4a7978f a7a89c0 4a7978f 6412949 4a7978f c89ea6c 4a7978f 8f48e7b 4a7978f 37d3c52 4a7978f 7239d24 5da027f 4a7978f 7239d24 4a7978f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
from __future__ import annotations
import math
import random
import gradio as gr
import torch
from PIL import Image, ImageOps
from diffusers import StableDiffusionSAGPipeline
help_text = """
"""
examples = [
[
' ',
50,
"Fix Seed",
8367,
3.0,
1.0,
],
[
' ',
50,
"Fix Seed",
65911,
3.0,
1.0,
],
[
' ',
50,
"Fix Seed",
98184,
3.0,
1.0,
],
[
' ',
50,
"Fix Seed",
33784,
3.0,
1.0,
],
[
' ',
50,
"Fix Seed",
74545,
3.0,
1.0,
],
[
' ',
50,
"Fix Seed",
8393,
3.0,
1.0,
],
[
'.',
50,
"Fix Seed",
24865,
3.0,
1.0,
],
[
'A poster',
50,
"Fix Seed",
37956,
3.0,
1.0,
],
[
'A high-quality living room',
50,
"Fix Seed",
78710,
3.0,
1.0,
],
[
'A Scottish Fold playing with a ball',
50,
"Fix Seed",
11511,
3.0,
1.0,
],
]
model_id = "runwayml/stable-diffusion-v1-5"
def main():
pipe = StableDiffusionSAGPipeline.from_pretrained(model_id, torch_dtype=torch.float16).to('cuda')
def generate(
prompt: str,
steps: int,
randomize_seed: bool,
seed: int,
cfg_scale: float,
sag_scale: float,
):
seed = random.randint(0, 100000) if randomize_seed else seed
generator = torch.manual_seed(seed)
ori_image = pipe(prompt, generator=generator, num_inference_steps=steps, guidance_scale=cfg_scale, sag_scale=0.0).images[0]
generator = torch.manual_seed(seed)
sag_image = pipe(prompt, generator=generator, num_inference_steps=steps, guidance_scale=cfg_scale, sag_scale=sag_scale).images[0]
return [ori_image, sag_image, seed]
def reset():
return [50, "Randomize Seed", 90061, 3.0, 1.0, None, None]
with gr.Blocks() as demo:
gr.HTML("""<h1 style="font-weight: 900; margin-bottom: 10px;">
Self-Attention Guidance Demo
</h1>
<p>Condition-agnostic diffusion guidance using the internal self-attention by Susung Hong.<p>
<p>SAG also produces fine <b>unconditional</b> results. Just leave the prompt blank for the unconditional sampling of Stable Diffusion.<p>
<a href="https://huggingface.co/spaces/susunghong/Self-Attention-Guidance?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space"></a>
""")
with gr.Row():
with gr.Column(scale=5):
prompt = gr.Textbox(lines=1, label="Enter your prompt", interactive=True)
with gr.Column(scale=1, min_width=60):
generate_button = gr.Button("Generate")
with gr.Column(scale=1, min_width=60):
reset_button = gr.Button("Reset")
with gr.Row():
steps = gr.Number(value=50, precision=0, label="Steps", interactive=True)
randomize_seed = gr.Radio(
["Fix Seed", "Randomize Seed"],
label="Seed Type",
value="Fix Seed",
type="index",
show_label=False,
interactive=True,
)
seed = gr.Number(value=90061, precision=0, label="Seed", interactive=True)
with gr.Row():
cfg_scale = gr.Slider(
label="Text Guidance Scale", minimum=0, maximum=10, value=3.0, step=0.1
)
sag_scale = gr.Slider(
label="Self-Attention Guidance Scale", minimum=0, maximum=1.0, value=1.0, step=0.05
)
with gr.Row():
ori_image = gr.Image(label="CFG", type="pil", interactive=False)
sag_image = gr.Image(label="SAG + CFG", type="pil", interactive=False)
ori_image.style(height=512, width=512)
sag_image.style(height=512, width=512)
ex = gr.Examples(
examples=examples,
fn=generate,
inputs=[
prompt,
steps,
randomize_seed,
seed,
cfg_scale,
sag_scale,
],
outputs=[ori_image, sag_image, seed],
cache_examples=False,
)
gr.Markdown(help_text)
generate_button.click(
fn=generate,
inputs=[
prompt,
steps,
randomize_seed,
seed,
cfg_scale,
sag_scale,
],
outputs=[ori_image, sag_image, seed],
)
reset_button.click(
fn=reset,
inputs=[],
outputs=[steps, randomize_seed, seed, cfg_scale, sag_scale, ori_image, sag_image],
)
demo.queue(concurrency_count=1)
demo.launch(share=False)
if __name__ == "__main__":
main() |