Spaces:
Running
Running
File size: 20,603 Bytes
5c72fe4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 |
import torch
from torch import nn, optim
from torch.nn import functional as F
from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler
import numpy as np
from keras.preprocessing.sequence import pad_sequences
from transformers import BertTokenizer
from transformers import BertForSequenceClassification
import random
from sklearn.metrics import f1_score
from utils import *
import os
import argparse
import warnings
warnings.filterwarnings("ignore")
class ModelWithTemperature(nn.Module):
"""
A thin decorator, which wraps a model with temperature scaling
model (nn.Module):
A classification neural network
NB: Output of the neural network should be the classification logits,
NOT the softmax (or log softmax)!
"""
def __init__(self, model):
super(ModelWithTemperature, self).__init__()
self.model = model
self.temperature = nn.Parameter(torch.ones(1) * 1.5)
def forward(self, input_ids, token_type_ids, attention_mask):
logits = self.model(input_ids, token_type_ids=token_type_ids, attention_mask=attention_mask)[0]
return self.temperature_scale(logits)
def temperature_scale(self, logits):
"""
Perform temperature scaling on logits
"""
# Expand temperature to match the size of logits
temperature = self.temperature.unsqueeze(1).expand(logits.size(0), logits.size(1))
return logits / temperature
# This function probably should live outside of this class, but whatever
def set_temperature(self, valid_loader, args):
"""
Tune the tempearature of the model (using the validation set).
We're going to set it to optimize NLL.
valid_loader (DataLoader): validation set loader
"""
nll_criterion = nn.CrossEntropyLoss()
ece_criterion = ECE().to(args.device)
# First: collect all the logits and labels for the validation set
logits_list = []
labels_list = []
with torch.no_grad():
for step, batch in enumerate(valid_loader):
batch = tuple(t.to(args.device) for t in batch)
b_input_ids, b_input_mask, b_labels = batch
logits = self.model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0]
logits_list.append(logits)
labels_list.append(b_labels)
logits = torch.cat(logits_list)
labels = torch.cat(labels_list)
# Calculate NLL and ECE before temperature scaling
before_temperature_nll = nll_criterion(logits, labels).item()
before_temperature_ece = ece_criterion(logits, labels).item()
print('Before temperature - NLL: %.3f, ECE: %.3f' % (before_temperature_nll, before_temperature_ece))
# Next: optimize the temperature w.r.t. NLL
optimizer = optim.LBFGS([self.temperature], lr=0.01, max_iter=50)
def eval():
loss = nll_criterion(self.temperature_scale(logits), labels)
loss.backward()
return loss
optimizer.step(eval)
# Calculate NLL and ECE after temperature scaling
after_temperature_nll = nll_criterion(self.temperature_scale(logits), labels).item()
after_temperature_ece = ece_criterion(self.temperature_scale(logits), labels).item()
print('Optimal temperature: %.3f' % self.temperature.item())
print('After temperature - NLL: %.3f, ECE: %.3f' % (after_temperature_nll, after_temperature_ece))
return self
class ECE(nn.Module):
def __init__(self, n_bins=15):
"""
n_bins (int): number of confidence interval bins
"""
super(ECE, self).__init__()
bin_boundaries = torch.linspace(0, 1, n_bins + 1)
self.bin_lowers = bin_boundaries[:-1]
self.bin_uppers = bin_boundaries[1:]
def forward(self, logits, labels):
softmaxes = F.softmax(logits, dim=1)
confidences, predictions = torch.max(softmaxes, 1)
accuracies = predictions.eq(labels)
ece = torch.zeros(1, device=logits.device)
for bin_lower, bin_upper in zip(self.bin_lowers, self.bin_uppers):
# Calculated |confidence - accuracy| in each bin
in_bin = confidences.gt(bin_lower.item()) * confidences.le(bin_upper.item())
prop_in_bin = in_bin.float().mean()
if prop_in_bin.item() > 0:
accuracy_in_bin = accuracies[in_bin].float().mean()
avg_confidence_in_bin = confidences[in_bin].mean()
ece += torch.abs(avg_confidence_in_bin - accuracy_in_bin) * prop_in_bin
return ece
class ECE_v2(nn.Module):
def __init__(self, n_bins=15):
"""
n_bins (int): number of confidence interval bins
"""
super(ECE_v2, self).__init__()
bin_boundaries = torch.linspace(0, 1, n_bins + 1)
self.bin_lowers = bin_boundaries[:-1]
self.bin_uppers = bin_boundaries[1:]
def forward(self, softmaxes, labels):
confidences, predictions = torch.max(softmaxes, 1)
accuracies = predictions.eq(labels)
ece = torch.zeros(1, device=softmaxes.device)
for bin_lower, bin_upper in zip(self.bin_lowers, self.bin_uppers):
# Calculated |confidence - accuracy| in each bin
in_bin = confidences.gt(bin_lower.item()) * confidences.le(bin_upper.item())
prop_in_bin = in_bin.float().mean()
if prop_in_bin.item() > 0:
accuracy_in_bin = accuracies[in_bin].float().mean()
avg_confidence_in_bin = confidences[in_bin].mean()
ece += torch.abs(avg_confidence_in_bin - accuracy_in_bin) * prop_in_bin
return ece
def accurate_nb(preds, labels):
pred_flat = np.argmax(preds, axis=1).flatten()
labels_flat = labels.flatten()
return np.sum(pred_flat == labels_flat)
def set_seed(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
def apply_dropout(m):
if type(m) == nn.Dropout:
m.train()
def main():
parser = argparse.ArgumentParser(description='Test code - measure the detection peformance')
parser.add_argument('--eva_iter', default=1, type=int, help='number of passes for mc-dropout when evaluation')
parser.add_argument('--model', type=str, choices=['base', 'manifold-smoothing', 'mc-dropout','temperature'], default='base')
parser.add_argument('--seed', type=int, default=0, help='random seed for test')
parser.add_argument("--epochs", default=10, type=int, help="Number of epochs for training.")
parser.add_argument('--index', type=int, default=0, help='random seed you used during training')
parser.add_argument('--in_dataset', required=True, help='target dataset: 20news')
parser.add_argument('--out_dataset', required=True, help='out-of-dist dataset')
parser.add_argument('--eval_batch_size', type=int, default=32)
parser.add_argument('--saved_dataset', type=str, default='n')
parser.add_argument('--eps_out', default=0.001, type=float, help="Perturbation size of out-of-domain adversarial training")
parser.add_argument("--eps_y", default=0.1, type=float, help="Perturbation size of label")
parser.add_argument('--eps_in', default=0.0001, type=float, help="Perturbation size of in-domain adversarial training")
args = parser.parse_args()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
args.device = device
set_seed(args)
outf = 'test/'+args.model+'-'+str(args.index)
if not os.path.isdir(outf):
os.makedirs(outf)
if args.model == 'base':
dirname = '{}/BERT-base-{}'.format(args.in_dataset, args.index)
pretrained_dir = './model_save/{}'.format(dirname)
# Load a trained model and vocabulary that you have fine-tuned
model = BertForSequenceClassification.from_pretrained(pretrained_dir)
model.to(args.device)
print('Load Tekenizer')
elif args.model == 'mc-dropout':
dirname = '{}/BERT-base-{}'.format(args.in_dataset, args.index)
pretrained_dir = './model_save/{}'.format(dirname)
# Load a trained model and vocabulary that you have fine-tuned
model = BertForSequenceClassification.from_pretrained(pretrained_dir)
model.to(args.device)
elif args.model == 'temperature':
dirname = '{}/BERT-base-{}'.format(args.in_dataset, args.index)
pretrained_dir = './model_save/{}'.format(dirname)
orig_model = BertForSequenceClassification.from_pretrained(pretrained_dir)
orig_model.to(args.device)
model = ModelWithTemperature(orig_model)
model.to(args.device)
elif args.model == 'manifold-smoothing':
dirname = '{}/BERT-mf-{}-{}-{}-{}'.format(args.in_dataset, args.index, args.eps_in, args.eps_y, args.eps_out)
print(dirname)
pretrained_dir = './model_save/{}'.format(dirname)
model = BertForSequenceClassification.from_pretrained(pretrained_dir)
model.to(args.device)
if args.saved_dataset == 'n':
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased', do_lower_case=True)
train_sentences, val_sentences, test_sentences, train_labels, val_labels, test_labels = load_dataset(args.in_dataset)
_, _, nt_test_sentences, _, _, nt_test_labels = load_dataset(args.out_dataset)
val_input_ids = []
test_input_ids = []
nt_test_input_ids = []
if args.in_dataset == '20news' or args.in_dataset == '20news-15':
MAX_LEN = 150
else:
MAX_LEN = 256
for sent in val_sentences:
encoded_sent = tokenizer.encode(
sent, # Sentence to encode.
add_special_tokens = True, # Add '[CLS]' and '[SEP]'
truncation= True,
max_length = MAX_LEN, # Truncate all sentences.
#return_tensors = 'pt', # Return pytorch tensors.
)
# Add the encoded sentence to the list.
val_input_ids.append(encoded_sent)
for sent in test_sentences:
encoded_sent = tokenizer.encode(
sent, # Sentence to encode.
add_special_tokens = True, # Add '[CLS]' and '[SEP]'
truncation= True,
max_length = MAX_LEN, # Truncate all sentences.
#return_tensors = 'pt', # Return pytorch tensors.
)
# Add the encoded sentence to the list.
test_input_ids.append(encoded_sent)
for sent in nt_test_sentences:
encoded_sent = tokenizer.encode(
sent,
add_special_tokens = True,
truncation= True,
max_length = MAX_LEN,
)
nt_test_input_ids.append(encoded_sent)
# Pad our input tokens
val_input_ids = pad_sequences(val_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post")
test_input_ids = pad_sequences(test_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post")
nt_test_input_ids = pad_sequences(nt_test_input_ids, maxlen=MAX_LEN, dtype="long", truncating="post", padding="post")
val_attention_masks = []
test_attention_masks = []
nt_test_attention_masks = []
for seq in val_input_ids:
seq_mask = [float(i>0) for i in seq]
val_attention_masks.append(seq_mask)
for seq in test_input_ids:
seq_mask = [float(i>0) for i in seq]
test_attention_masks.append(seq_mask)
for seq in nt_test_input_ids:
seq_mask = [float(i>0) for i in seq]
nt_test_attention_masks.append(seq_mask)
val_inputs = torch.tensor(val_input_ids)
val_labels = torch.tensor(val_labels)
val_masks = torch.tensor(val_attention_masks)
test_inputs = torch.tensor(test_input_ids)
test_labels = torch.tensor(test_labels)
test_masks = torch.tensor(test_attention_masks)
nt_test_inputs = torch.tensor(nt_test_input_ids)
nt_test_labels = torch.tensor(nt_test_labels)
nt_test_masks = torch.tensor(nt_test_attention_masks)
val_data = TensorDataset(val_inputs, val_masks, val_labels)
test_data = TensorDataset(test_inputs, test_masks, test_labels)
nt_test_data = TensorDataset(nt_test_inputs, nt_test_masks, nt_test_labels)
dataset_dir = 'dataset/test'
if not os.path.exists(dataset_dir):
os.makedirs(dataset_dir)
torch.save(val_data, dataset_dir+'/{}_val_in_domain.pt'.format(args.in_dataset))
torch.save(test_data, dataset_dir+'/{}_test_in_domain.pt'.format(args.in_dataset))
torch.save(nt_test_data, dataset_dir+'/{}_test_out_of_domain.pt'.format(args.out_dataset))
else:
dataset_dir = 'dataset/test'
val_data = torch.load(dataset_dir+'/{}_val_in_domain.pt'.format(args.in_dataset))
test_data = torch.load(dataset_dir+'/{}_test_in_domain.pt'.format(args.in_dataset))
nt_test_data = torch.load(dataset_dir+'/{}_test_out_of_domain.pt'.format(args.out_dataset))
######## saved dataset
test_sampler = SequentialSampler(test_data)
test_dataloader = DataLoader(test_data, sampler=test_sampler, batch_size=args.eval_batch_size)
nt_test_sampler = SequentialSampler(nt_test_data)
nt_test_dataloader = DataLoader(nt_test_data, sampler=nt_test_sampler, batch_size=args.eval_batch_size)
val_sampler = SequentialSampler(val_data)
val_dataloader = DataLoader(val_data, sampler=val_sampler, batch_size=args.eval_batch_size)
if args.model == 'temperature':
model.set_temperature(val_dataloader, args)
model.eval()
if args.model == 'mc-dropout':
model.apply(apply_dropout)
correct = 0
total = 0
output_list = []
labels_list = []
##### validation dat
with torch.no_grad():
for step, batch in enumerate(val_dataloader):
batch = tuple(t.to(args.device) for t in batch)
b_input_ids, b_input_mask, b_labels = batch
total += b_labels.shape[0]
batch_output = 0
for j in range(args.eva_iter):
if args.model == 'temperature':
current_batch = model(input_ids=b_input_ids, token_type_ids=None, attention_mask=b_input_mask) #logits
else:
current_batch = model(input_ids=b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0] #logits
batch_output = batch_output + F.softmax(current_batch, dim=1)
batch_output = batch_output/args.eva_iter
output_list.append(batch_output)
labels_list.append(b_labels)
score, predicted = batch_output.max(1)
correct += predicted.eq(b_labels).sum().item()
###calculate accuracy and ECE
val_eval_accuracy = correct/total
print("Val Accuracy: {}".format(val_eval_accuracy))
ece_criterion = ECE_v2().to(args.device)
softmaxes_ece = torch.cat(output_list)
labels_ece = torch.cat(labels_list)
val_ece = ece_criterion(softmaxes_ece, labels_ece).item()
print('ECE on Val data: {}'.format(val_ece))
#### Test data
correct = 0
total = 0
output_list = []
labels_list = []
predict_list = []
true_list = []
true_list_ood = []
predict_mis = []
predict_in = []
score_list = []
correct_index_all = []
## test on in-distribution test set
with torch.no_grad():
for step, batch in enumerate(test_dataloader):
batch = tuple(t.to(args.device) for t in batch)
b_input_ids, b_input_mask, b_labels = batch
total += b_labels.shape[0]
batch_output = 0
for j in range(args.eva_iter):
if args.model == 'temperature':
current_batch = model(input_ids=b_input_ids, token_type_ids=None, attention_mask=b_input_mask) #logits
else:
current_batch = model(input_ids=b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0] #logits
batch_output = batch_output + F.softmax(current_batch, dim=1)
batch_output = batch_output/args.eva_iter
output_list.append(batch_output)
labels_list.append(b_labels)
score, predicted = batch_output.max(1)
correct += predicted.eq(b_labels).sum().item()
correct_index = (predicted == b_labels)
correct_index_all.append(correct_index)
score_list.append(score)
###calcutae accuracy
eval_accuracy = correct/total
print("Test Accuracy: {}".format(eval_accuracy))
##calculate ece
ece_criterion = ECE_v2().to(args.device)
softmaxes_ece = torch.cat(output_list)
labels_ece = torch.cat(labels_list)
ece = ece_criterion(softmaxes_ece, labels_ece).item()
print('ECE on Test data: {}'.format(ece))
#confidence for in-distribution data
score_in_array = torch.cat(score_list)
#indices of data that are classified correctly
correct_array = torch.cat(correct_index_all)
label_array = torch.cat(labels_list)
### test on out-of-distribution data
predict_ood = []
score_ood_list = []
true_list_ood = []
with torch.no_grad():
for step, batch in enumerate(nt_test_dataloader):
batch = tuple(t.to(args.device) for t in batch)
b_input_ids, b_input_mask, b_labels = batch
batch_output = 0
for j in range(args.eva_iter):
if args.model == 'temperature':
current_batch = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)
else:
current_batch = model(b_input_ids, token_type_ids=None, attention_mask=b_input_mask)[0]
batch_output = batch_output + F.softmax(current_batch, dim=1)
batch_output = batch_output/args.eva_iter
score_out, _ = batch_output.max(1)
score_ood_list.append(score_out)
score_ood_array = torch.cat(score_ood_list)
label_array = label_array.cpu().numpy()
score_ood_array = score_ood_array.cpu().numpy()
score_in_array = score_in_array.cpu().numpy()
correct_array = correct_array.cpu().numpy()
####### calculate NBAUCC for detection task
predict_o = np.zeros(len(score_in_array)+len(score_ood_array))
true_o = np.ones(len(score_in_array)+len(score_ood_array))
true_o[:len(score_in_array)] = 0 ## in-distribution data as false, ood data as positive
true_mis = np.ones(len(score_in_array))
true_mis[correct_array] = 0 ##true instances as false, misclassified instances as positive
predict_mis = np.zeros(len(score_in_array))
ood_sum = 0
mis_sum = 0
ood_sum_list = []
mis_sum_list = []
#### upper bound of the threshold tau for NBAUCC
stop_points = [0.50, 1.]
for threshold in np.arange(0., 1.01, 0.02):
predict_ood_index1 = (score_in_array < threshold)
predict_ood_index2 = (score_ood_array < threshold)
predict_ood_index = np.concatenate((predict_ood_index1, predict_ood_index2), axis=0)
predict_o[predict_ood_index] = 1
predict_mis[score_in_array<threshold] = 1
ood = f1_score(true_o, predict_o, average='binary') ##### detection f1 score for a specific threshold
mis = f1_score(true_mis, predict_mis, average='binary')
ood_sum += ood*0.02
mis_sum += mis*0.02
if threshold in stop_points:
ood_sum_list.append(ood_sum)
mis_sum_list.append(mis_sum)
for i in range(len(stop_points)):
print('OOD detection, NBAUCC {}: {}'.format(stop_points[i], ood_sum_list[i]/stop_points[i]))
print('misclassification detection, NBAUCC {}: {}'.format(stop_points[i], mis_sum_list[i]/stop_points[i]))
if __name__ == "__main__":
main()
|