File size: 5,267 Bytes
6a34fd4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import numpy as np
from scipy.special import softmax


class CELoss(object):

    def compute_bin_boundaries(self, probabilities = np.array([])):

        #uniform bin spacing
        if probabilities.size == 0:
            bin_boundaries = np.linspace(0, 1, self.n_bins + 1)
            self.bin_lowers = bin_boundaries[:-1]
            self.bin_uppers = bin_boundaries[1:]
        else:
            #size of bins 
            bin_n = int(self.n_data/self.n_bins)

            bin_boundaries = np.array([])

            probabilities_sort = np.sort(probabilities)  

            for i in range(0,self.n_bins):
                bin_boundaries = np.append(bin_boundaries,probabilities_sort[i*bin_n])
            bin_boundaries = np.append(bin_boundaries,1.0)

            self.bin_lowers = bin_boundaries[:-1]
            self.bin_uppers = bin_boundaries[1:]


    def get_probabilities(self, output, labels, logits):
        #If not probabilities apply softmax!
        if logits:
            self.probabilities = softmax(output, axis=1)
        else:
            self.probabilities = output

        self.labels = np.argmax(labels, axis=1)
        self.confidences = np.max(self.probabilities, axis=1)
        self.predictions = np.argmax(self.probabilities, axis=1)
        self.accuracies = np.equal(self.predictions, self.labels)

    def binary_matrices(self):
        idx = np.arange(self.n_data)
        #make matrices of zeros
        pred_matrix = np.zeros([self.n_data,self.n_class])
        label_matrix = np.zeros([self.n_data,self.n_class])
        #self.acc_matrix = np.zeros([self.n_data,self.n_class])
        pred_matrix[idx,self.predictions] = 1
        label_matrix[idx,self.labels] = 1

        self.acc_matrix = np.equal(pred_matrix, label_matrix)


    def compute_bins(self, index = None):
        self.bin_prop = np.zeros(self.n_bins)
        self.bin_acc = np.zeros(self.n_bins)
        self.bin_conf = np.zeros(self.n_bins)
        self.bin_score = np.zeros(self.n_bins)

        if index == None:
            confidences = self.confidences
            accuracies = self.accuracies
        else:
            confidences = self.probabilities[:,index]
            accuracies = self.acc_matrix[:,index]


        for i, (bin_lower, bin_upper) in enumerate(zip(self.bin_lowers, self.bin_uppers)):
            # Calculated |confidence - accuracy| in each bin
            in_bin = np.greater(confidences,bin_lower.item()) * np.less_equal(confidences,bin_upper.item())
            self.bin_prop[i] = np.mean(in_bin)

            if self.bin_prop[i].item() > 0:
                self.bin_acc[i] = np.mean(accuracies[in_bin])
                self.bin_conf[i] = np.mean(confidences[in_bin])
                self.bin_score[i] = np.abs(self.bin_conf[i] - self.bin_acc[i])

class MaxProbCELoss(CELoss):
    def loss(self, output, labels, n_bins = 15, logits = True):
        self.n_bins = n_bins
        super().compute_bin_boundaries()
        super().get_probabilities(output, labels, logits)
        super().compute_bins()

#http://people.cs.pitt.edu/~milos/research/AAAI_Calibration.pdf
class ECELoss(MaxProbCELoss):

    def loss(self, output, labels, n_bins = 15, logits = True):
        super().loss(output, labels, n_bins, logits)
        return np.dot(self.bin_prop,self.bin_score)

class MCELoss(MaxProbCELoss):
    
    def loss(self, output, labels, n_bins = 15, logits = True):
        super().loss(output, labels, n_bins, logits)
        return np.max(self.bin_score)

#https://arxiv.org/abs/1905.11001
#Overconfidence Loss (Good in high risk applications where confident but wrong predictions can be especially harmful)
class OELoss(MaxProbCELoss):

    def loss(self, output, labels, n_bins = 15, logits = True):
        super().loss(output, labels, n_bins, logits)
        return np.dot(self.bin_prop,self.bin_conf * np.maximum(self.bin_conf-self.bin_acc,np.zeros(self.n_bins)))


#https://arxiv.org/abs/1904.01685
class SCELoss(CELoss):

    def loss(self, output, labels, n_bins = 15, logits = True):
        sce = 0.0
        self.n_bins = n_bins
        self.n_data = len(output)
        self.n_class = len(output[0])

        super().compute_bin_boundaries()
        super().get_probabilities(output, labels, logits)
        super().binary_matrices()

        for i in range(self.n_class):
            super().compute_bins(i)
            sce += np.dot(self.bin_prop,self.bin_score)

        return sce/self.n_class

class TACELoss(CELoss):

    def loss(self, output, labels, threshold = 0.01, n_bins = 15, logits = True):
        tace = 0.0
        self.n_bins = n_bins
        self.n_data = len(output)
        self.n_class = len(output[0])

        super().get_probabilities(output, labels, logits)
        self.probabilities[self.probabilities < threshold] = 0
        super().binary_matrices()

        for i in range(self.n_class):
            super().compute_bin_boundaries(self.probabilities[:,i]) 
            super().compute_bins(i)
            tace += np.dot(self.bin_prop,self.bin_score)

        return tace/self.n_class

#create TACELoss with threshold fixed at 0
class ACELoss(TACELoss):

    def loss(self, output, labels, n_bins = 15, logits = True):
        return super().loss(output, labels, 0.0 , n_bins, logits)