File size: 12,882 Bytes
bffd338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a34fd4
 
 
 
 
 
 
debb3aa
 
6a34fd4
1922da0
5c72fe4
1922da0
6a34fd4
 
debb3aa
 
1922da0
5c72fe4
1922da0
 
6a34fd4
 
 
debb3aa
1922da0
5c72fe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1922da0
6a34fd4
debb3aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1922da0
445302e
 
 
 
 
 
 
 
 
debb3aa
 
 
5fdf2ba
 
 
debb3aa
 
 
 
 
 
 
 
 
 
 
 
445302e
debb3aa
 
 
 
6a34fd4
 
1922da0
5c72fe4
1922da0
6a34fd4
 
bffd338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a34fd4
 
bffd338
 
1922da0
5c72fe4
 
 
1922da0
bffd338
1922da0
6a34fd4
debb3aa
 
 
6a34fd4
 
1922da0
5c72fe4
1922da0
6a34fd4
 
bffd338
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405


# import gradio as gr
# from huggingface_hub import hf_hub_download
# import pickle
# import gradio as gr
# import numpy as np
# import subprocess
# import shutil
# import matplotlib.pyplot as plt
# from sklearn.metrics import roc_curve, auc
# # Define the function to process the input file and model selection
# def process_file(file,label, model_name):
#     with open(file.name, 'r') as f:
#         content = f.read()
#     saved_test_dataset = "train.txt"
#     saved_test_label = "train_label.txt"
    
#     # Save the uploaded file content to a specified location
#     shutil.copyfile(file.name, saved_test_dataset)
#     shutil.copyfile(label.name, saved_test_label)
#     # For demonstration purposes, we'll just return the content with the selected model name
#     if(model_name=="FS"):
#         checkpoint="ratio_proportion_change3/output/FS/bert_fine_tuned.model.ep32"
#     elif(model_name=="IS"):
#         checkpoint="ratio_proportion_change3/output/IS/bert_fine_tuned.model.ep14"
#     elif(model_name=="CORRECTNESS"):
#         checkpoint="ratio_proportion_change3/output/correctness/bert_fine_tuned.model.ep48"
#     elif(model_name=="EFFECTIVENESS"):
#         checkpoint="ratio_proportion_change3/output/effectiveness/bert_fine_tuned.model.ep28"
#     else:
#         checkpoint=None

#     print(checkpoint)
#     # subprocess.run(["python", "src/test_saved_model.py",
#     #                 "--finetuned_bert_checkpoint",checkpoint
#     #                 ])
#     result = {}
#     with open("result.txt", 'r') as file:
#         for line in file:
#             key, value = line.strip().split(': ', 1)
#             # print(type(key))
#             if key=='epoch':
#                 result[key]=value
#             else:
#                  result[key]=float(value)
# # Create a plot
#     with open("roc_data.pkl", "rb") as f:
#         fpr, tpr, _ = pickle.load(f)



#     roc_auc = auc(fpr, tpr)
#     fig, ax = plt.subplots()
#     ax.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
#     ax.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
#     ax.set(xlabel='False Positive Rate', ylabel='True Positive Rate', title=f'ROC Curve: {model_name}')
#     ax.legend(loc="lower right")
#     ax.grid()

#     # Save plot to a file
#     plot_path = "plot.png"
#     fig.savefig(plot_path)
#     plt.close(fig)

#     # Prepare text output
#     text_output = f"Model: {model_name}\nResult:\n{result}"

#     return text_output,plot_path

# # List of models for the dropdown menu
# models = ["FS", "IS", "CORRECTNESS","EFFECTIVENESS"]

# # Create the Gradio interface
# with gr.Blocks() as demo:
#     gr.Markdown("# ASTRA")
#     gr.Markdown("Upload a .txt file and select a model from the dropdown menu.")
    
#     with gr.Row():
#         file_input = gr.File(label="Upload a .txt file", file_types=['.txt'])
#         label_input = gr.File(label="Upload a .txt file", file_types=['.txt'])
#         model_dropdown = gr.Dropdown(choices=models, label="Select a model")
    
#     with gr.Row():
#         output_text = gr.Textbox(label="Output Text")
#         output_image = gr.Image(label="Output Plot")

#     btn = gr.Button("Submit")
#     btn.click(fn=process_file, inputs=[file_input,label_input, model_dropdown], outputs=[output_text,output_image])

# # Launch the app
# demo.launch()

import gradio as gr
from huggingface_hub import hf_hub_download
import pickle
import gradio as gr
import numpy as np
import subprocess
import shutil
import matplotlib.pyplot as plt
from sklearn.metrics import roc_curve, auc
# Define the function to process the input file and model selection

def process_file(file,label,info, model_name):

    with open(file.name, 'r') as f:
        content = f.read()
    saved_test_dataset = "train.txt"
    saved_test_label = "train_label.txt"

    saved_train_info="train_info.txt"


    
    # Save the uploaded file content to a specified location
    shutil.copyfile(file.name, saved_test_dataset)
    shutil.copyfile(label.name, saved_test_label)

    shutil.copyfile(info.name, saved_train_info)
    # For demonstration purposes, we'll just return the content with the selected model name
    # if(model_name=="highGRschool10"):
    #     checkpoint="ratio_proportion_change3/output/FS/bert_fine_tuned.model.ep32"
    # elif(model_name=="lowGRschoolAll"):
    #     checkpoint="ratio_proportion_change3/output/IS/bert_fine_tuned.model.ep14"
    # elif(model_name=="fullTest"):
    #     checkpoint="ratio_proportion_change3/output/correctness/bert_fine_tuned.model.ep48"
    # else:
    #     checkpoint=None

    # print(checkpoint)
    subprocess.run([
        "python", "new_test_saved_finetuned_model.py",
        "-workspace_name", "ratio_proportion_change3_2223/sch_largest_100-coded",
        "-finetune_task", model_name,
        "-test_dataset_path","../../../../train.txt",
        # "-test_label_path","../../../../train_label.txt",
        "-finetuned_bert_classifier_checkpoint", 
        "ratio_proportion_change3_2223/sch_largest_100-coded/output/highGRschool10/bert_fine_tuned.model.ep42",
        "-e",str(1),
        "-b",str(5)
    ], shell=True)

    # For demonstration purposes, we'll just return the content with the selected model name
    if(model_name=="FS"):
        checkpoint="ratio_proportion_change3/output/FS/bert_fine_tuned.model.ep32"
    elif(model_name=="IS"):
        checkpoint="ratio_proportion_change3/output/IS/bert_fine_tuned.model.ep14"
    elif(model_name=="CORRECTNESS"):
        checkpoint="ratio_proportion_change3/output/correctness/bert_fine_tuned.model.ep48"
    elif(model_name=="EFFECTIVENESS"):
        checkpoint="ratio_proportion_change3/output/effectiveness/bert_fine_tuned.model.ep28"
    else:
        checkpoint=None

    print(checkpoint)
    subprocess.run(["python", "src/test_saved_model.py",
                    "--finetuned_bert_checkpoint",checkpoint
                    ])

    result = {}
    with open("result.txt", 'r') as file:
        for line in file:
            key, value = line.strip().split(': ', 1)
            # print(type(key))
            if key=='epoch':
                result[key]=value
            else:
                 result[key]=float(value)
# Create a plot
    with open("roc_data.pkl", "rb") as f:
        fpr, tpr, _ = pickle.load(f)



    roc_auc = auc(fpr, tpr)
    fig, ax = plt.subplots()
    ax.plot(fpr, tpr, color='blue', lw=2, label=f'ROC curve (area = {roc_auc:.2f})')
    ax.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
    ax.set(xlabel='False Positive Rate', ylabel='True Positive Rate', title=f'ROC Curve: {model_name}')
    ax.legend(loc="lower right")
    ax.grid()

    # Save plot to a file
    plot_path = "plot.png"
    fig.savefig(plot_path)
    plt.close(fig)

    # Prepare text output
    text_output = f"Model: {model_name}\nResult:\n{result}"

    return text_output,plot_path

# List of models for the dropdown menu

models = ["highGRschool10", "lowGRschoolAll", "fullTest"]


# Create the Gradio interface
with gr.Blocks(css="""
    body {
        background-color: #1e1e1e!important;
        font-family: 'Arial', sans-serif;
        color: #f5f5f5!important;;
    }
    .gradio-container {
        max-width: 850px!important;
        margin: 0 auto!important;;
        padding: 20px!important;;
        background-color: #292929!important;
        border-radius: 10px;
        box-shadow: 0 4px 20px rgba(0, 0, 0, 0.2);
    }
    .gradio-container-4-44-0 .prose h1 {
    font-size: var(--text-xxl);
    color: #ffffff!important;
}
    #title {
        color: white!important;
        font-size: 2.3em;
        font-weight: bold;
        text-align: center!important;
        margin-bottom: 20px;
    }
    .description {
        text-align: center;
        font-size: 1.1em;
        color: #bfbfbf;
        margin-bottom: 30px;
    }
    .file-box {
        max-width: 180px;
        padding: 5px;
        background-color: #444!important;
        border: 1px solid #666!important;
        border-radius: 6px;
        height: 80px!important;;  
        margin: 0 auto!important;; 
        text-align: center; 
        color: transparent;
    }
    .file-box span {
        color: #f5f5f5!important;
        font-size: 1em;
        line-height: 45px; /* Vertically center text */
    }
    .dropdown-menu {
        max-width: 220px;
        margin: 0 auto!important;
        background-color: #444!important;
        color:#444!important;
        border-radius: 6px;
        padding: 8px;
        font-size: 1.1em;
        border: 1px solid #666;
    }
    .button {
        background-color: #4CAF50!important;
        color: white!important;
        font-size: 1.1em;
        padding: 10px 25px;
        border-radius: 6px;
        cursor: pointer;
        transition: background-color 0.2s ease-in-out;
    }
    .button:hover {
        background-color: #45a049!important;
    }
    .output-text {
        background-color: #333!important;
        padding: 12px;
        border-radius: 8px;
        border: 1px solid #666;
        font-size: 1.1em;
    }
    .footer {
        text-align: center;
        margin-top: 50px;
        font-size: 0.9em;
        color: #b0b0b0;
    }
    .svelte-12ioyct .wrap {
    display: none !important;
}
.file-label-text {
    display: none !important;
}

div.svelte-sfqy0y {
    display: flex;
    flex-direction: inherit;
    flex-wrap: wrap;
    gap: var(--form-gap-width);
    box-shadow: var(--block-shadow);
    border: var(--block-border-width) solid var(--border-color-primary);
    border-radius: var(--block-radius);
    background: #1f2937!important;
    overflow-y: hidden;
}

.block.svelte-12cmxck {
    position: relative;
    margin: 0;
    box-shadow: var(--block-shadow);
    border-width: var(--block-border-width);
    border-color: var(--block-border-color);
    border-radius: var(--block-radius);
    background: #1f2937!important;
    width: 100%;
    line-height: var(--line-sm);
}

    .svelte-12ioyct .wrap {
    display: none !important;
}
.file-label-text {
    display: none !important;
}
input[aria-label="file upload"] {
    display: none !important;
}

gradio-app .gradio-container.gradio-container-4-44-0 .contain .file-box span {
    font-size: 1em;
    line-height: 45px;
    color: #1f2937 !important;
}
.wrap.svelte-12ioyct {
    display: flex;
    flex-direction: column;
    justify-content: center;
    align-items: center;
    min-height: var(--size-60);
    color: #1f2937 !important;
    line-height: var(--line-md);
    height: 100%;
    padding-top: var(--size-3);
    text-align: center;
    margin: auto var(--spacing-lg);
}
span.svelte-1gfkn6j:not(.has-info) {
    margin-bottom: var(--spacing-lg);
    color: white!important;
}
label.float.svelte-1b6s6s {
    position: relative!important;
    top: var(--block-label-margin);
    left: var(--block-label-margin);
}
label.svelte-1b6s6s {
    display: inline-flex;
    align-items: center;
    z-index: var(--layer-2);
    box-shadow: var(--block-label-shadow);
    border: var(--block-label-border-width) solid var(--border-color-primary);
    border-top: none;
    border-left: none;
    border-radius: var(--block-label-radius);
    background: rgb(120 151 180)!important;
    padding: var(--block-label-padding);
    pointer-events: none;
    color: #1f2937!important;
    font-weight: var(--block-label-text-weight);
    font-size: var(--block-label-text-size);
    line-height: var(--line-sm);
}
.file.svelte-18wv37q.svelte-18wv37q {
    display: block!important;
    width: var(--size-full);
}

tbody.svelte-18wv37q>tr.svelte-18wv37q:nth-child(odd) {
    background: ##7897b4!important;
    color: white;
    background: #aca7b2;
}
.gradio-container-4-31-4 .prose h1, .gradio-container-4-31-4 .prose h2, .gradio-container-4-31-4 .prose h3, .gradio-container-4-31-4 .prose h4, .gradio-container-4-31-4 .prose h5 {

    color: white;
""") as demo:
    gr.Markdown("<h1 id='title'>ASTRA</h1>", elem_id="title")
    gr.Markdown("<p class='description'>Upload a .txt file and select a model from the dropdown menu.</p>")
    
    with gr.Row():
        file_input = gr.File(label="Upload a test file", file_types=['.txt'], elem_classes="file-box")
        label_input = gr.File(label="Upload test labels", file_types=['.txt'], elem_classes="file-box")

        info_input = gr.File(label="Upload test info", file_types=['.txt'], elem_classes="file-box")
    
    model_dropdown = gr.Dropdown(choices=models, label="Select Finetune Task", elem_classes="dropdown-menu")

    

    
    with gr.Row():
        output_text = gr.Textbox(label="Output Text")
        output_image = gr.Image(label="Output Plot")

    btn = gr.Button("Submit")

    btn.click(fn=process_file, inputs=[file_input,label_input,info_input, model_dropdown], outputs=[output_text,output_image])


# Launch the app
demo.launch()