Spaces:
Running
Running
File size: 9,047 Bytes
5c72fe4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import time
import pandas as pd
import sys
class DataPreprocessor:
def __init__(self, input_file_path):
self.input_file_path = input_file_path
self.unique_students = None
self.unique_problems = None
self.unique_prob_hierarchy = None
self.unique_steps = None
self.unique_kcs = None
def analyze_dataset(self):
file_iterator = self.load_file_iterator()
start_time = time.time()
self.unique_students = {"st"}
self.unique_problems = {"pr"}
self.unique_prob_hierarchy = {"ph"}
self.unique_kcs = {"kc"}
for chunk_data in file_iterator:
for student_id, std_groups in chunk_data.groupby('Anon Student Id'):
self.unique_students.update({student_id})
prob_hierarchy = std_groups.groupby('Level (Workspace Id)')
for hierarchy, hierarchy_groups in prob_hierarchy:
self.unique_prob_hierarchy.update({hierarchy})
prob_name = hierarchy_groups.groupby('Problem Name')
for problem_name, prob_name_groups in prob_name:
self.unique_problems.update({problem_name})
sub_skills = prob_name_groups['KC Model(MATHia)']
for a in sub_skills:
if str(a) != "nan":
temp = a.split("~~")
for kc in temp:
self.unique_kcs.update({kc})
self.unique_students.remove("st")
self.unique_problems.remove("pr")
self.unique_prob_hierarchy.remove("ph")
self.unique_kcs.remove("kc")
end_time = time.time()
print("Time Taken to analyze dataset = ", end_time - start_time)
print("Length of unique students->", len(self.unique_students))
print("Length of unique problems->", len(self.unique_problems))
print("Length of unique problem hierarchy->", len(self.unique_prob_hierarchy))
print("Length of Unique Knowledge components ->", len(self.unique_kcs))
def analyze_dataset_by_section(self, workspace_name):
file_iterator = self.load_file_iterator()
start_time = time.time()
self.unique_students = {"st"}
self.unique_problems = {"pr"}
self.unique_prob_hierarchy = {"ph"}
self.unique_steps = {"s"}
self.unique_kcs = {"kc"}
# with open("workspace_info.txt", 'a') as f:
# sys.stdout = f
for chunk_data in file_iterator:
for student_id, std_groups in chunk_data.groupby('Anon Student Id'):
prob_hierarchy = std_groups.groupby('Level (Workspace Id)')
for hierarchy, hierarchy_groups in prob_hierarchy:
if workspace_name == hierarchy:
# print("Workspace : ", hierarchy)
self.unique_students.update({student_id})
self.unique_prob_hierarchy.update({hierarchy})
prob_name = hierarchy_groups.groupby('Problem Name')
for problem_name, prob_name_groups in prob_name:
self.unique_problems.update({problem_name})
step_names = prob_name_groups['Step Name']
sub_skills = prob_name_groups['KC Model(MATHia)']
for step in step_names:
if str(step) != "nan":
self.unique_steps.update({step})
for a in sub_skills:
if str(a) != "nan":
temp = a.split("~~")
for kc in temp:
self.unique_kcs.update({kc})
self.unique_problems.remove("pr")
self.unique_prob_hierarchy.remove("ph")
self.unique_steps.remove("s")
self.unique_kcs.remove("kc")
end_time = time.time()
print("Time Taken to analyze dataset = ", end_time - start_time)
print("Workspace-> ",workspace_name)
print("Length of unique students->", len(self.unique_students))
print("Length of unique problems->", len(self.unique_problems))
print("Length of unique problem hierarchy->", len(self.unique_prob_hierarchy))
print("Length of unique step names ->", len(self.unique_steps))
print("Length of unique knowledge components ->", len(self.unique_kcs))
# f.close()
# sys.stdout = sys.__stdout__
def analyze_dataset_by_school(self, workspace_name, school_id=None):
file_iterator = self.load_file_iterator(sep=",")
start_time = time.time()
self.unique_schools = set()
self.unique_class = set()
self.unique_students = set()
self.unique_problems = set()
self.unique_steps = set()
self.unique_kcs = set()
self.unique_actions = set()
self.unique_outcomes = set()
self.unique_new_steps_w_action_attempt = set()
self.unique_new_steps_w_kcs = set()
self.unique_new_steps_w_action_attempt_kcs = set()
for chunk_data in file_iterator:
for school, school_group in chunk_data.groupby('CF (Anon School Id)'):
# if school and school == school_id:
self.unique_schools.add(school)
for class_id, class_group in school_group.groupby('CF (Anon Class Id)'):
self.unique_class.add(class_id)
for student_id, std_group in class_group.groupby('Anon Student Id'):
self.unique_students.add(student_id)
for prob, prob_group in std_group.groupby('Problem Name'):
self.unique_problems.add(prob)
step_names = set(prob_group['Step Name'])
sub_skills = set(prob_group['KC Model(MATHia)'])
actions = set(prob_group['Action'])
outcomes = set(prob_group['Outcome'])
self.unique_steps.update(step_names)
self.unique_kcs.update(sub_skills)
self.unique_actions.update(actions)
self.unique_outcomes.update(outcomes)
for step in step_names:
if pd.isna(step):
step_group = prob_group[pd.isna(prob_group['Step Name'])]
else:
step_group = prob_group[prob_group['Step Name']==step]
for kc in set(step_group['KC Model(MATHia)']):
new_step = f"{step}:{kc}"
self.unique_new_steps_w_kcs.add(new_step)
for action, action_group in step_group.groupby('Action'):
for attempt, attempt_group in action_group.groupby('Attempt At Step'):
new_step = f"{step}:{action}:{attempt}"
self.unique_new_steps_w_action_attempt.add(new_step)
for kc in set(attempt_group["KC Model(MATHia)"]):
new_step = f"{step}:{action}:{attempt}:{kc}"
self.unique_new_steps_w_action_attempt_kcs.add(new_step)
end_time = time.time()
print("Time Taken to analyze dataset = ", end_time - start_time)
print("Workspace-> ",workspace_name)
print("Length of unique students->", len(self.unique_students))
print("Length of unique problems->", len(self.unique_problems))
print("Length of unique classes->", len(self.unique_class))
print("Length of unique step names ->", len(self.unique_steps))
print("Length of unique knowledge components ->", len(self.unique_kcs))
print("Length of unique actions ->", len(self.unique_actions))
print("Length of unique outcomes ->", len(self.unique_outcomes))
print("Length of unique new step names with actions and attempts ->", len(self.unique_new_steps_w_action_attempt))
print("Length of unique new step names with actions, attempts and kcs ->", len(self.unique_new_steps_w_action_attempt_kcs))
print("Length of unique new step names with kcs ->", len(self.unique_new_steps_w_kcs))
def load_file_iterator(self, sep="\t"):
chunk_iterator = pd.read_csv(self.input_file_path, sep=sep, header=0, iterator=True, chunksize=1000000)
return chunk_iterator
|