File size: 31,022 Bytes
215c4b7 512649a 215c4b7 de759d7 215c4b7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 |
from functools import partial
import json
import gradio as gr
import os
# environment
os.environ['HF_HOME'] = '/dlabscratch1/anmari'
os.environ['TRANSFORMERS_CACHE'] = '/dlabscratch1/anmari'
os.environ['HF_DATASETS_CACHE'] = '/dlabscratch1/anmari'
# os.environ["HF_TOKEN"] = ""
import torch
from PIL import Image
from SDLens import HookedStableDiffusionXLPipeline, CachedPipeline as CachedFLuxPipeline
from SDLens.cache_and_edit.flux_pipeline import EditedFluxPipeline
from SAE import SparseAutoencoder
from utils import TimedHook, add_feature_on_area_base, replace_with_feature_base, add_feature_on_area_turbo, replace_with_feature_turbo, add_feature_on_area_flux
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
import threading
from einops import rearrange
import spaces
# from retrieval import FeatureRetriever
code_to_block_sd = {
"down.2.1": "unet.down_blocks.2.attentions.1",
"mid.0": "unet.mid_block.attentions.0",
"up.0.1": "unet.up_blocks.0.attentions.1",
"up.0.0": "unet.up_blocks.0.attentions.0"
}
code_to_block_flux = {"18": "transformer.transformer_blocks.18"}
FLUX_NAMES = ["black-forest-labs/FLUX.1-schnell", "black-forest-labs/FLUX.1-dev"]
MODELS_CONFIG = {
"stabilityai/stable-diffusion-xl-base-1.0": {
"steps": 25,
"guidance_scale": 8.0,
"choices": ["up.0.1 (style)", "down.2.1 (composition)", "up.0.0 (details)", "mid.0"],
"value": "down.2.1 (composition)",
"code_to_block": code_to_block_sd,
"max_steps": 50,
"is_flux": False,
"downsample_factor": 16,
"add_feature_on_area": add_feature_on_area_base,
"num_features": 5120,
},
"stabilityai/sdxl-turbo": {
"steps": 1,
"guidance_scale": 0.0,
"choices": ["up.0.1 (style)", "down.2.1 (composition)", "up.0.0 (details)", "mid.0"],
"value": "down.2.1 (composition)",
"code_to_block": code_to_block_sd,
"max_steps": 4,
"is_flux": False,
"downsample_factor": 32,
"add_feature_on_area": add_feature_on_area_turbo,
"num_features": 5120,
},
"black-forest-labs/FLUX.1-schnell": {
"steps": 1,
"guidance_scale": 0.0,
"choices": ["18"],
"value": "18",
"code_to_block": code_to_block_flux,
"max_steps": 4,
"is_flux": True,
"exclude_list": [2462, 2974, 1577, 786, 3188, 9986, 4693, 8472, 8248, 325, 9596, 2813, 10803, 11773, 11410, 1067, 2965, 10488, 4537, 2102],
"downsample_factor": 8,
"add_feature_on_area": add_feature_on_area_flux,
"num_features": 12288
},
"black-forest-labs/FLUX.1-dev": {
"steps": 25,
"guidance_scale": 0.0,
"choices": ["18"],
"value": "18",
"code_to_block": code_to_block_flux,
"max_steps": 50,
"is_flux": True,
"exclude_list": [2462, 2974, 1577, 786, 3188, 9986, 4693, 8472, 8248, 325, 9596, 2813, 10803, 11773, 11410, 1067, 2965, 10488, 4537, 2102],
"downsample_factor": 8,
"add_feature_on_area": add_feature_on_area_flux,
"num_features": 12288
}
}
lock = threading.Lock()
def process_cache(cache, saes_dict, model_config, timestep=None):
top_features_dict = {}
sparse_maps_dict = {}
for code in model_config['code_to_block'].keys():
block = model_config["code_to_block"][code]
sae = saes_dict[code]
if model_config["is_flux"]:
with torch.no_grad():
features = sae.encode(torch.stack(cache.image_activation)) # shape: [timestep, batch, seq_len, num_features]
features[..., model_config["exclude_list"]] = 0
if timestep is not None and timestep < features.shape[0]:
features = features[timestep:timestep+1]
# I want to get [batch, timestep, 64, 64, num_features]
sparse_maps = rearrange(features, "t b (w h) n -> b t w h n", w=64, h=64).squeeze(0).squeeze(0)
else:
diff = cache["output"][block] - cache["input"][block]
if diff.shape[0] == 2: # guidance is on and we need to select the second output
diff = diff[1].unsqueeze(0)
# If a specific timestep is provided, select that timestep from the cached activations
if timestep is not None and timestep < diff.shape[1]:
diff = diff[:, timestep:timestep+1]
diff = diff.permute(0, 1, 3, 4, 2).squeeze(0).squeeze(0)
with torch.no_grad():
sparse_maps = sae.encode(diff)
averages = torch.mean(sparse_maps, dim=(0, 1))
top_features = torch.topk(averages, 40).indices
top_features_dict[code] = top_features.cpu().tolist()
sparse_maps_dict[code] = sparse_maps.cpu().numpy()
return top_features_dict, sparse_maps_dict
def plot_image_heatmap(cache, block_select, radio, model_config):
code = block_select.split()[0]
feature = int(radio)
heatmap = cache["heatmaps"][code][:, :, feature]
scaling_factor = 16 if model_config["is_flux"] else 32
heatmap = np.kron(heatmap, np.ones((scaling_factor, scaling_factor)))
image = cache["image"].convert("RGBA")
jet = plt.cm.jet
cmap = jet(np.arange(jet.N))
cmap[:1, -1] = 0
cmap[1:, -1] = 0.6
cmap = ListedColormap(cmap)
heatmap = (heatmap - np.min(heatmap)) / (np.max(heatmap) - np.min(heatmap))
heatmap_rgba = cmap(heatmap)
heatmap_image = Image.fromarray((heatmap_rgba * 255).astype(np.uint8))
heatmap_with_transparency = Image.alpha_composite(image, heatmap_image)
return heatmap_with_transparency
def create_prompt_part(pipe, saes_dict, demo):
model_config = MODELS_CONFIG[pipe.pipe.name_or_path]
@spaces.GPU
def image_gen(prompt, timestep=None, num_steps=None, guidance_scale=None):
lock.acquire()
try:
# Default values
default_n_steps = model_config["steps"]
default_guidance = model_config["guidance_scale"]
# Use provided values if available, otherwise use defaults
n_steps = default_n_steps if num_steps is None else int(num_steps)
guidance = default_guidance if guidance_scale is None else float(guidance_scale)
# Convert timestep to integer if it's not None
timestep_int = None if timestep is None else int(timestep)
if "FLUX" in pipe.pipe.name_or_path:
images = pipe.run(
prompt,
num_inference_steps=n_steps,
width=1024,
height=1024,
cache_activations=True,
guidance_scale=guidance,
positions_to_cache = list(model_config["code_to_block"].values()),
inverse=False,
)
cache = pipe.activation_cache
else:
images, cache = pipe.run_with_cache(
prompt,
positions_to_cache=list(model_config["code_to_block"].values()),
num_inference_steps=n_steps,
generator=torch.Generator(device="cpu").manual_seed(42),
guidance_scale=guidance,
save_input=True,
save_output=True
)
finally:
lock.release()
top_features_dict, top_sparse_maps_dict = process_cache(cache, saes_dict, model_config, timestep_int)
return images.images[0], {
"image": images.images[0],
"heatmaps": top_sparse_maps_dict,
"features": top_features_dict
}
def update_radio(cache, block_select):
code = block_select.split()[0]
return gr.update(choices=cache["features"][code])
def update_img(cache, block_select, radio):
new_img = plot_image_heatmap(cache, block_select, radio, model_config)
return new_img
with gr.Tab("Explore", elem_classes="tabs") as explore_tab:
cache = gr.State(value={
"image": None,
"heatmaps": None,
"features": []
})
with gr.Row():
with gr.Column(scale=7):
with gr.Row(equal_height=True):
prompt_field = gr.Textbox(lines=1, label="Enter prompt here", value="A cinematic shot of a professor sloth wearing a tuxedo at a BBQ party and eathing a dish with peas.")
button = gr.Button("Generate", elem_classes="generate_button1")
with gr.Row():
image = gr.Image(width=512, height=512, image_mode="RGB", label="Generated image")
with gr.Column(scale=4):
block_select = gr.Dropdown(
choices=model_config["choices"], # replace this for flux
value=model_config["value"],
label="Select block",
elem_id="block_select",
interactive=True
)
with gr.Group() as sdxl_base_controls:
steps_slider = gr.Slider(
minimum=1,
maximum=model_config["max_steps"],
value= model_config["steps"],
step=1,
label="Number of steps",
elem_id="steps_slider",
interactive=True,
visible=True
)
# Add timestep selector
# TODO: check this
timestep_selector = gr.Slider(
minimum=0,
maximum=model_config["max_steps"]-1,
value=None,
step=1,
label="Timestep (leave empty for average across all steps)",
elem_id="timestep_selector",
interactive=True,
visible=True,
)
recompute_button = gr.Button("Recompute", elem_id="recompute_button")
# Update max timestep when steps change
steps_slider.change(lambda s: gr.update(maximum=s-1), [steps_slider], [timestep_selector])
radio = gr.Radio(choices=[], label="Select a feature", interactive=True)
button.click(image_gen, [prompt_field, timestep_selector, steps_slider], outputs=[image, cache])
cache.change(update_radio, [cache, block_select], outputs=[radio])
block_select.select(update_radio, [cache, block_select], outputs=[radio])
radio.select(update_img, [cache, block_select, radio], outputs=[image])
recompute_button.click(image_gen, [prompt_field, timestep_selector, steps_slider], outputs=[image, cache])
demo.load(image_gen, [prompt_field, timestep_selector, steps_slider], outputs=[image, cache])
return explore_tab
def downsample_mask(image, factor):
downsampled = image.reshape(
(image.shape[0] // factor, factor,
image.shape[1] // factor, factor)
)
downsampled = downsampled.mean(axis=(1, 3))
return downsampled
def create_intervene_part(pipe: HookedStableDiffusionXLPipeline, saes_dict, means_dict, demo):
model_config = MODELS_CONFIG[pipe.pipe.name_or_path]
@spaces.GPU
def image_gen(prompt, num_steps, guidance_scale=None):
lock.acquire()
guidance = model_config["guidance_scale"] if guidance_scale is None else float(guidance_scale)
try:
if "FLUX" in pipe.pipe.name_or_path:
images = pipe.run(
prompt,
num_inference_steps=int(num_steps),
width=1024,
height=1024,
cache_activations=False,
guidance_scale=guidance,
inverse=False,
)
else:
images = pipe.run_with_hooks(
prompt,
position_hook_dict={},
num_inference_steps=int(num_steps),
generator=torch.Generator(device="cpu").manual_seed(42),
guidance_scale=guidance,
)
finally:
lock.release()
if images.images[0].size == (1024, 1024):
return images.images[0].resize((512, 512))
else:
return images.images[0]
@spaces.GPU
def image_mod(prompt, block_str, brush_index, strength, num_steps, input_image, guidance_scale=None, start_index=None, end_index=None):
block = block_str.split(" ")[0]
mask = (input_image["layers"][0] > 0)[:, :, -1].astype(float)
mask = downsample_mask(mask, model_config["downsample_factor"])
mask = torch.tensor(mask, dtype=torch.float32, device="cuda")
if mask.sum() == 0:
gr.Info("No mask selected, please draw on the input image")
# Set default values for start_index and end_index if not provided
if start_index is None:
start_index = 0
if end_index is None:
end_index = int(num_steps)
# Ensure start_index and end_index are within valid ranges
start_index = max(0, min(int(start_index), int(num_steps)))
end_index = max(0, min(int(end_index), int(num_steps)))
# Ensure start_index is less than end_index
if start_index >= end_index:
start_index = max(0, end_index - 1)
def myhook(module, input, output):
return model_config["add_feature_on_area"](
saes_dict[block],
brush_index,
mask * means_dict[block][brush_index] * strength,
module,
input,
output)
hook = TimedHook(myhook, int(num_steps), np.arange(start_index, end_index))
lock.acquire()
guidance = model_config["guidance_scale"] if guidance_scale is None else float(guidance_scale)
try:
if model_config["is_flux"]:
image = pipe.run_with_edit(
prompt,
seed=42,
num_inference_steps=int(num_steps),
edit_fn= lambda input, output: hook(None, input, output),
layers_for_edit_fn=[i for i in range(18, 57)],
stream="image").images[0]
else:
image = pipe.run_with_hooks(
prompt,
position_hook_dict={model_config["code_to_block"][block]: hook},
num_inference_steps=int(num_steps),
generator=torch.Generator(device="cpu").manual_seed(42),
guidance_scale=guidance
).images[0]
finally:
lock.release()
return image
def feature_icon(block_str, brush_index, guidance_scale=None):
block = block_str.split(" ")[0]
if block in ["mid.0", "up.0.0"]:
gr.Info("Note that Feature Icon works best with down.2.1 and up.0.1 blocks but feel free to explore", duration=3)
def hook(module, input, output):
if is_base_model:
return replace_with_feature_base(
saes_dict[block],
brush_index,
means_dict[block][brush_index] * saes_dict[block].k,
module,
input,
output
)
else:
return replace_with_feature_turbo(
saes_dict[block],
brush_index,
means_dict[block][brush_index] * saes_dict[block].k,
module,
input,
output)
lock.acquire()
guidance = model_config["guidance_scale"] if guidance_scale is None else float(guidance_scale)
try:
image = pipe.run_with_hooks(
"",
position_hook_dict={model_config["code_to_block"][block]: hook},
num_inference_steps=model_config["steps"],
generator=torch.Generator(device="cpu").manual_seed(42),
guidance_scale=guidance,
).images[0]
finally:
lock.release()
return image
with gr.Tab("Paint!", elem_classes="tabs") as intervene_tab:
image_state = gr.State(value=None)
with gr.Row():
with gr.Column(scale=3):
# Generation column
with gr.Row():
# prompt and num_steps
prompt_field = gr.Textbox(lines=1, label="Enter prompt here", value="A dog plays with a ball, cartoon", elem_id="prompt_input")
with gr.Row():
num_steps = gr.Number(value=model_config["steps"], label="Number of steps", minimum=1, maximum=model_config["max_steps"], elem_id="num_steps", precision=0)
with gr.Row():
# Generate button
button_generate = gr.Button("Generate", elem_id="generate_button")
with gr.Column(scale=3):
# Intervention column
with gr.Row():
# dropdowns and number inputs
with gr.Column(scale=7):
with gr.Row():
block_select = gr.Dropdown(
choices=model_config["choices"],
value=model_config["value"],
label="Select block",
elem_id="block_select"
)
brush_index = gr.Number(value=0, label="Brush index", minimum=0, maximum=model_config["num_features"]-1, elem_id="brush_index", precision=0)
# with gr.Row():
# button_icon = gr.Button('Feature Icon', elem_id="feature_icon_button")
with gr.Row():
gr.Markdown("**TimedHook Range** (which steps to apply the feature)", visible=True)
with gr.Row():
start_index = gr.Number(value=0, label="Start index", minimum=0, maximum=model_config["max_steps"], elem_id="start_index", precision=0, visible=True)
end_index = gr.Number(value=model_config["steps"], label="End index", minimum=0, maximum=model_config["max_steps"], elem_id="end_index", precision=0, visible=True)
with gr.Column(scale=3):
with gr.Row():
strength = gr.Number(value=10, label="Strength", minimum=-40, maximum=40, elem_id="strength", precision=2)
with gr.Row():
button = gr.Button('Apply', elem_id="apply_button")
with gr.Row():
with gr.Column():
# Input image
i_image = gr.Sketchpad(
height=610,
layers=False, transforms=[], placeholder="Generate and paint!",
brush=gr.Brush(default_size=64, color_mode="fixed", colors=['black']),
container=False,
canvas_size=(512, 512),
label="Input Image")
clear_button = gr.Button("Clear")
clear_button.click(lambda x: x, [image_state], [i_image])
# Output image
o_image = gr.Image(width=512, height=512, label="Output Image")
# Set up the click events
button_generate.click(image_gen, inputs=[prompt_field, num_steps], outputs=[image_state])
image_state.change(lambda x: x, [image_state], [i_image])
# Update max values for start_index and end_index when num_steps changes
def update_index_maxes(steps):
return gr.update(maximum=steps), gr.update(maximum=steps)
num_steps.change(update_index_maxes, [num_steps], [start_index, end_index])
button.click(image_mod,
inputs=[prompt_field, block_select, brush_index, strength, num_steps, i_image, start_index, end_index],
outputs=o_image)
# button_icon.click(feature_icon, inputs=[block_select, brush_index], outputs=o_image)
demo.load(image_gen, [prompt_field, num_steps], outputs=[image_state])
return intervene_tab
def create_top_images_part(demo, pipe):
model_config = MODELS_CONFIG[pipe.pipe.name_or_path]
if isinstance(pipe, HookedStableDiffusionXLPipeline):
is_flux = False
elif isinstance(pipe, CachedFLuxPipeline):
is_flux = True
else:
raise AssertionError(f"Unknown pipe class: {type(pipe)}")
def update_top_images(block_select, brush_index):
block = block_select.split(" ")[0]
# Define path for fetching image
if is_flux:
part = 1 if brush_index <= 7000 else 2
url = f"https://huggingface.co/datasets/antoniomari/flux_sae_images/resolve/main/{block}/part{part}/{brush_index}.jpg"
else:
url = f"https://huggingface.co/surokpro2/sdxl_sae_images/resolve/main/{block}/{brush_index}.jpg"
return url
with gr.Tab("Top Images", elem_classes="tabs") as top_images_tab:
with gr.Row():
block_select = gr.Dropdown(
choices=["flux_18"] if is_flux else ["up.0.1 (style)", "down.2.1 (composition)", "up.0.0 (details)", "mid.0"],
value="flux_18" if is_flux else "down.2.1 (composition)",
label="Select block"
)
brush_index = gr.Number(value=0, label="Brush index", minimum=0, maximum=model_config["num_features"]-1, precision=0)
with gr.Row():
image = gr.Image(width=600, height=600, label="Top Images")
block_select.select(update_top_images, [block_select, brush_index], outputs=[image])
brush_index.change(update_top_images, [block_select, brush_index], outputs=[image])
demo.load(update_top_images, [block_select, brush_index], outputs=[image])
return top_images_tab
def create_top_images_plus_search_part(retriever, demo, pipe):
model_config = MODELS_CONFIG[pipe.pipe.name_or_path]
if isinstance(pipe, HookedStableDiffusionXLPipeline):
is_flux = False
elif isinstance(pipe, CachedFLuxPipeline):
is_flux = True
else:
raise AssertionError(f"Unknown pipe class: {type(pipe)}")
def update_cache(block_select, search_by_text, search_by_index):
if search_by_text == "":
top_indices = []
index = search_by_index
block = block_select.split(" ")[0]
# Define path for fetching image
if is_flux:
part = 1 if index <= 7000 else 2
url = f"https://huggingface.co/antoniomari/flux_sae_images/resolve/main/{block}/part{part}/{index}.jpg"
else:
url = f"https://huggingface.co/surokpro2/sdxl_sae_images/resolve/main/{block}/{index}.jpg"
return url, {"image": url, "feature_idx": index, "features": top_indices}
else:
# TODO
if retriever is None:
raise ValueError("Feature retrieval is not enabled")
lock.acquire()
try:
top_indices = list(retriever.query_text(search_by_text, block_select.split(" ")[0]).keys())
finally:
lock.release()
block = block_select.split(" ")[0]
top_indices = list(map(int, top_indices))
index = top_indices[0]
url = f"https://huggingface.co/surokpro2/sdxl_sae_images/resolve/main/{block}/{index}.jpg"
return url, {"image": url, "feature_idx": index, "features": top_indices[:20]}
def update_radio(cache):
return gr.update(choices=cache["features"], value=cache["feature_idx"])
def update_img(cache, block_select, index):
block = block_select.split(" ")[0]
url = f"https://huggingface.co/surokpro2/sdxl_sae_images/resolve/main/{block}/{index}.jpg"
return url
with gr.Tab("Top Images", elem_classes="tabs") as explore_tab:
cache = gr.State(value={
"image": None,
"feature_idx": None,
"features": []
})
with gr.Row():
with gr.Column(scale=7):
with gr.Row():
# top images
image = gr.Image(width=600, height=600, image_mode="RGB", label="Top images")
with gr.Column(scale=4):
block_select = gr.Dropdown(
choices=["flux_18"] if is_flux else ["up.0.1 (style)", "down.2.1 (composition)", "up.0.0 (details)", "mid.0"],
value="flux_18" if is_flux else "down.2.1 (composition)",
label="Select block",
elem_id="block_select",
interactive=True
)
search_by_index = gr.Number(value=0, label="Search by index", minimum=0, maximum=model_config["num_features"]-1, precision=0)
search_by_text = gr.Textbox(lines=1, label="Search by text", value="", visible=False)
radio = gr.Radio(choices=[], label="Select a feature", interactive=True, visible=False)
search_by_text.change(update_cache,
[block_select, search_by_text, search_by_index],
outputs=[image, cache])
block_select.select(update_cache,
[block_select, search_by_text, search_by_index],
outputs=[image, cache])
cache.change(update_radio, [cache], outputs=[radio])
radio.select(update_img, [cache, block_select, radio], outputs=[image])
search_by_index.change(update_img, [cache, block_select, search_by_index], outputs=[image])
demo.load(update_img,
[cache, block_select, search_by_index],
outputs=[image])
return explore_tab
def create_intro_part():
with gr.Tab("Instructions", elem_classes="tabs") as intro_tab:
gr.Markdown(
'''# Unpacking SDXL Turbo with Sparse Autoencoders
## Demo Overview
This demo showcases the use of Sparse Autoencoders (SAEs) to understand the features learned by the Stable Diffusion XL Turbo model.
## How to Use
### Explore
* Enter a prompt in the text box and click on the "Generate" button to generate an image.
* You can observe the active features in different blocks plot on top of the generated image.
### Top Images
* For each feature, you can view the top images that activate the feature the most.
### Paint!
* Generate an image using the prompt.
* Paint on the generated image to apply interventions.
* Use the "Feature Icon" button to understand how the selected brush functions.
### Remarks
* Not all brushes mix well with all images. Experiment with different brushes and strengths.
* Feature Icon works best with `down.2.1 (composition)` and `up.0.1 (style)` blocks.
* This demo is provided for research purposes only. We do not take responsibility for the content generated by the demo.
### Interesting features to try
To get started, try the following features:
- down.2.1 (composition): 2301 (evil) 3747 (image frame) 4998 (cartoon)
- up.0.1 (style): 4977 (tiger stripes) 90 (fur) 2615 (twilight blur)
'''
)
return intro_tab
def create_demo(pipe, saes_dict, means_dict, use_retrieval=True):
custom_css = """
.tabs button {
font-size: 20px !important; /* Adjust font size for tab text */
padding: 10px !important; /* Adjust padding to make the tabs bigger */
font-weight: bold !important; /* Adjust font weight to make the text bold */
}
.generate_button1 {
max-width: 160px !important;
margin-top: 20px !important;
margin-bottom: 20px !important;
}
"""
if use_retrieval:
retriever = None # FeatureRetriever()
else:
retriever = None
with gr.Blocks(css=custom_css) as demo:
# with create_intro_part():
# pass
with create_prompt_part(pipe, saes_dict, demo):
pass
with create_top_images_part(demo, pipe):
pass
with create_intervene_part(pipe, saes_dict, means_dict, demo):
pass
return demo
if __name__ == "__main__":
import os
import gradio as gr
import torch
from SDLens import HookedStableDiffusionXLPipeline
from SAE import SparseAutoencoder
from huggingface_hub import hf_hub_download
from huggingface_hub import login
login(token=os.environ["HF_TOKEN"])
dtype = torch.float16
pipe = EditedFluxPipeline.from_pretrained(
"black-forest-labs/FLUX.1-schnell",
device_map="balanced",
torch_dtype=dtype
)
pipe.set_progress_bar_config(disable=True)
pipe = CachedFLuxPipeline(pipe)
# Parameters
DEVICE = "cuda"
# Hugging Face repo setup
HF_REPO_ID = "antoniomari/SAE_flux_18"
HF_BRANCH = "main"
# Command-line arguments
block_code = "18"
block_name = code_to_block_flux[block_code]
saes_dict = {}
means_dict = {}
# Download files from the root of the repo
state_dict_path = hf_hub_download(
repo_id=HF_REPO_ID,
filename="state_dict.pth",
revision=HF_BRANCH
)
config_path = hf_hub_download(
repo_id=HF_REPO_ID,
filename="config.json",
revision=HF_BRANCH
)
mean_path = hf_hub_download(
repo_id=HF_REPO_ID,
filename="mean.pt",
revision=HF_BRANCH
)
# Load config and model
with open(config_path, "r") as f:
config = json.load(f)
sae = SparseAutoencoder(**config)
checkpoint = torch.load(state_dict_path, map_location=DEVICE)
state_dict = checkpoint["state_dict"]
sae.load_state_dict(state_dict)
sae = sae.to(DEVICE, dtype=torch.float16).eval()
means = torch.load(mean_path, map_location=DEVICE).to(dtype)
saes_dict[block_code] = sae
means_dict[block_code] = means
demo = create_demo(pipe, saes_dict, means_dict)
demo.launch()
|