File size: 15,056 Bytes
60616b8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 |
"""Utility functions for training and inference."""
import math
import pickle
import sys
from contextlib import nullcontext
from io import BytesIO
from pathlib import Path
from typing import TYPE_CHECKING, ContextManager, Dict, List, Mapping, Optional, TypeVar, Union
import lightning as L
import torch
import torch.nn as nn
import torch.utils._device
from lightning.fabric.strategies import FSDPStrategy
from lightning.fabric.utilities.load import _lazy_load as lazy_load
from torch.serialization import normalize_storage_type
if TYPE_CHECKING:
from model import GPT
def find_multiple(n: int, k: int) -> int:
assert k > 0
if n % k == 0:
return n
return n + k - (n % k)
def num_parameters(module: nn.Module, requires_grad: Optional[bool] = None) -> int:
total = 0
for p in module.parameters():
if requires_grad is None or p.requires_grad == requires_grad:
if hasattr(p, "quant_state"):
# bitsandbytes 4bit layer support
total += math.prod(p.quant_state[1])
else:
total += p.numel()
return total
def gptq_quantization(enabled: bool = False) -> ContextManager:
if not enabled:
return nullcontext()
from lightning.fabric.plugins.precision.utils import _ClassReplacementContextManager
from quantize.gptq import ColBlockQuantizedLinear
class QuantizedLinear(ColBlockQuantizedLinear):
def __init__(self, *args, **kwargs):
super().__init__(*args, bits=4, tile_cols=-1, **kwargs)
return _ClassReplacementContextManager({"torch.nn.Linear": QuantizedLinear})
def check_valid_checkpoint_dir(checkpoint_dir: Path) -> None:
files = {
"lit_model.pth": (checkpoint_dir / "lit_model.pth").is_file(),
"lit_config.json": (checkpoint_dir / "lit_config.json").is_file(),
"tokenizer.json OR tokenizer.model": (checkpoint_dir / "tokenizer.json").is_file() or (
checkpoint_dir / "tokenizer.model"
).is_file(),
"tokenizer_config.json": (checkpoint_dir / "tokenizer_config.json").is_file(),
}
if checkpoint_dir.is_dir():
if all(files.values()):
# we're good
return
problem = f" is missing the files: {[f for f, exists in files.items() if not exists]!r}"
else:
problem = " is not a checkpoint directory"
# list locally available checkpoints
available = list(Path("checkpoints").glob("*/*"))
if available:
options = "\n --checkpoint_dir ".join([""] + [repr(str(p.resolve())) for p in available])
extra = f"\nYou have downloaded locally:{options}\n"
else:
extra = ""
error_message = (
f"--checkpoint_dir {str(checkpoint_dir.absolute())!r}{problem}."
"\nFind download instructions at https://github.com/Lightning-AI/lit-gpt/blob/main/tutorials\n"
f"{extra}\nSee all download options by running:\n python scripts/download.py"
)
print(error_message, file=sys.stderr)
raise SystemExit(1)
class SavingProxyForStorage:
def __init__(self, obj, saver, protocol_version=5):
self.protocol_version = protocol_version
self.saver = saver
if not (isinstance(obj, torch.storage.TypedStorage) or torch.is_storage(obj)):
raise TypeError(f"expected storage, not {type(obj)}")
# this logic is taken from PyTorch 2.0+ torch/serialization.py
if isinstance(obj, torch.storage.TypedStorage):
# PT upstream wants to deprecate this eventually...
storage = obj._untyped_storage
storage_type_str = obj._pickle_storage_type()
storage_type = getattr(torch, storage_type_str)
storage_numel = obj._size()
else:
storage = obj
storage_type = normalize_storage_type(type(obj))
storage_numel = storage.nbytes()
storage_key = saver._write_storage_and_return_key(storage)
location = torch.serialization.location_tag(storage)
self.storage_info = ("storage", storage_type, storage_key, location, storage_numel)
def __reduce_ex__(self, protocol_version):
assert False, "this should be handled with out of band"
class SavingProxyForTensor:
def __init__(self, tensor, saver, protocol_version=5):
self.protocol_version = protocol_version
self.reduce_ret_fn, reduce_args = tensor.__reduce_ex__(protocol_version)
if reduce_args[0] == torch._utils._rebuild_tensor_v2:
# for Tensors with Python attributes
(a0, a1, (storage, *a2_other), *other_reduce_args) = reduce_args
assert isinstance(storage, torch.storage.TypedStorage), "Please check for updates"
storage_proxy = SavingProxyForStorage(storage, saver, protocol_version=protocol_version)
self.reduce_args = (a0, a1, (storage_proxy, *a2_other), *other_reduce_args)
else:
(storage, *other_reduce_args) = reduce_args
assert isinstance(storage, torch.storage.TypedStorage), "Please check for updates"
storage_proxy = SavingProxyForStorage(storage, saver, protocol_version=protocol_version)
self.reduce_args = (storage_proxy, *other_reduce_args)
def __reduce_ex__(self, protocol_version):
if protocol_version != self.protocol_version:
raise RuntimeError(f"Unexpected protocol version: expected {self.protocol_version}, got {protocol_version}")
return self.reduce_ret_fn, self.reduce_args
class IncrementalPyTorchPickler(pickle.Pickler):
def __init__(self, saver, *args, **kwargs):
super().__init__(*args, **kwargs)
self.storage_dtypes = {}
self.saver = saver
self.id_map = {}
# this logic is taken from PyTorch 2.0+ torch/serialization.py
def persistent_id(self, obj):
# FIXME: the docs say that persistent_id should only return a string
# but torch store returns tuples. This works only in the binary protocol
# see
# https://docs.python.org/2/library/pickle.html#pickling-and-unpickling-external-objects
# https://github.com/python/cpython/blob/master/Lib/pickle.py#L527-L537
if isinstance(obj, SavingProxyForStorage):
return obj.storage_info
if isinstance(obj, torch.storage.TypedStorage) or torch.is_storage(obj):
if isinstance(obj, torch.storage.TypedStorage):
# TODO: Once we decide to break serialization FC, this case
# can be deleted
storage = obj._untyped_storage
storage_dtype = obj.dtype
storage_type_str = obj._pickle_storage_type()
storage_type = getattr(torch, storage_type_str)
storage_numel = obj._size()
else:
storage = obj
storage_dtype = torch.uint8
storage_type = normalize_storage_type(type(obj))
storage_numel = storage.nbytes()
# If storage is allocated, ensure that any other saved storages
# pointing to the same data all have the same dtype. If storage is
# not allocated, don't perform this check
if storage.data_ptr() != 0:
if storage.data_ptr() in self.storage_dtypes:
if storage_dtype != self.storage_dtypes[storage.data_ptr()]:
raise RuntimeError(
"Cannot save multiple tensors or storages that view the same data as different types"
)
else:
self.storage_dtypes[storage.data_ptr()] = storage_dtype
storage_key = self.id_map.get(storage._cdata)
if storage_key is None:
storage_key = self.saver._write_storage_and_return_key(storage)
self.id_map[storage._cdata] = storage_key
location = torch.serialization.location_tag(storage)
return ("storage", storage_type, storage_key, location, storage_numel)
return None
class incremental_save:
def __init__(self, name):
self.name = name
self.zipfile = torch._C.PyTorchFileWriter(str(name))
self.has_saved = False
self.next_key = 0
def __enter__(self):
return self
def store_early(self, tensor):
if isinstance(tensor, torch.Tensor):
return SavingProxyForTensor(tensor, self)
raise TypeError(f"can only store tensors early, not {type(tensor)}")
def save(self, obj):
if self.has_saved:
raise RuntimeError("have already saved")
# Write the pickle data for `obj`
data_buf = BytesIO()
pickler = IncrementalPyTorchPickler(self, data_buf, protocol=5)
pickler.dump(obj)
data_value = data_buf.getvalue()
self.zipfile.write_record("data.pkl", data_value, len(data_value))
self.has_saved = True
def _write_storage_and_return_key(self, storage):
if self.has_saved:
raise RuntimeError("have already saved")
key = self.next_key
self.next_key += 1
name = f"data/{key}"
if storage.device.type != "cpu":
storage = storage.cpu()
num_bytes = storage.nbytes()
self.zipfile.write_record(name, storage.data_ptr(), num_bytes)
return key
def __exit__(self, type, value, traceback):
self.zipfile.write_end_of_file()
T = TypeVar("T")
def chunked_cross_entropy(
logits: Union[torch.Tensor, List[torch.Tensor]], targets: torch.Tensor, chunk_size: int = 128
) -> torch.Tensor:
# with large max_sequence_lengths, the beginning of `backward` allocates a large memory chunk which can dominate
# the memory usage in fine-tuning settings with low number of parameters.
# as a workaround hack, the cross entropy computation is chunked to force it to deallocate on the go, reducing
# the memory spike's magnitude
# lm_head was chunked (we are fine-tuning)
if isinstance(logits, list):
# don't want to chunk cross entropy
if chunk_size == 0:
logits = torch.cat(logits, dim=1)
logits = logits.reshape(-1, logits.size(-1))
targets = targets.reshape(-1)
return torch.nn.functional.cross_entropy(logits, targets, ignore_index=-1)
# chunk cross entropy
logit_chunks = [logit_chunk.reshape(-1, logit_chunk.size(-1)) for logit_chunk in logits]
target_chunks = [target_chunk.reshape(-1) for target_chunk in targets.split(logits[0].size(1), dim=1)]
loss_chunks = [
torch.nn.functional.cross_entropy(logit_chunk, target_chunk, ignore_index=-1, reduction="none")
for logit_chunk, target_chunk in zip(logit_chunks, target_chunks)
]
return torch.cat(loss_chunks).mean()
# no chunking at all
logits = logits.reshape(-1, logits.size(-1))
targets = targets.reshape(-1)
if chunk_size == 0:
return torch.nn.functional.cross_entropy(logits, targets, ignore_index=-1)
# lm_head wasn't chunked, chunk cross entropy
logit_chunks = logits.split(chunk_size)
target_chunks = targets.split(chunk_size)
loss_chunks = [
torch.nn.functional.cross_entropy(logit_chunk, target_chunk, ignore_index=-1, reduction="none")
for logit_chunk, target_chunk in zip(logit_chunks, target_chunks)
]
return torch.cat(loss_chunks).mean()
def map_old_state_dict_weights(state_dict: Dict, mapping: Mapping, prefix: str) -> Dict:
for checkpoint_name, attribute_name in mapping.items():
full_checkpoint_name = prefix + checkpoint_name
if full_checkpoint_name in state_dict:
full_attribute_name = prefix + attribute_name
state_dict[full_attribute_name] = state_dict.pop(full_checkpoint_name)
return state_dict
def get_default_supported_precision(training: bool) -> str:
"""Return default precision that is supported by the hardware: either `bf16` or `16`.
Args:
training: `-mixed` or `-true` version of the precision to use
Returns:
default precision that is suitable for the task and is supported by the hardware
"""
from lightning.fabric.accelerators import MPSAccelerator
if MPSAccelerator.is_available() or (torch.cuda.is_available() and not torch.cuda.is_bf16_supported()):
return "16-mixed" if training else "16-true"
return "bf16-mixed" if training else "bf16-true"
def load_checkpoint(fabric: L.Fabric, model: nn.Module, checkpoint_path: Path, strict: bool = True) -> None:
if isinstance(fabric.strategy, FSDPStrategy):
fabric.load_raw(checkpoint_path, model, strict=strict)
else:
state_dict = lazy_load(checkpoint_path)
state_dict = state_dict.get("model", state_dict)
model.load_state_dict(state_dict, strict=strict)
def flops_per_param(max_seq_length: int, n_layer: int, n_embd: int, n_params: int) -> int:
flops_per_token = 2 * n_params # each parameter is used for a MAC (2 FLOPS) per network operation
# this assumes that all samples have a fixed length equal to the block size
# which is most likely false during finetuning
flops_per_seq = flops_per_token * max_seq_length
attn_flops_per_seq = n_layer * 2 * 2 * (n_embd * (max_seq_length**2))
return flops_per_seq + attn_flops_per_seq
def estimate_flops(model: "GPT", training: bool) -> int:
"""Measures estimated FLOPs for MFU.
Refs:
* https://ar5iv.labs.arxiv.org/html/2205.05198#A1
* https://ar5iv.labs.arxiv.org/html/2204.02311#A2
"""
# using all parameters for this is a naive over estimation because not all model parameters actually contribute to
# this FLOP computation (e.g. embedding, norm). For this reason, the result will be higher by a fixed percentage
# (~10%) compared to the measured FLOPs, making those lower but more realistic.
# For a proper estimate, this needs a more fine-grained calculation as in Appendix A of the paper.
n_trainable_params = num_parameters(model, requires_grad=True)
trainable_flops = flops_per_param(
model.max_seq_length, model.config.n_layer, model.config.n_embd, n_trainable_params
)
# forward + backward + gradients (assumes no gradient accumulation)
ops_per_step = 3 if training else 1
n_frozen_params = num_parameters(model, requires_grad=False)
frozen_flops = flops_per_param(model.max_seq_length, model.config.n_layer, model.config.n_embd, n_frozen_params)
# forward + backward
frozen_ops_per_step = 2 if training else 1
return ops_per_step * trainable_flops + frozen_ops_per_step * frozen_flops |