File size: 16,728 Bytes
fe41012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
'''
Modified version for full net lora
(Lora for ResBlock and up/down sample block)
'''
import os, sys
import re
import torch

from modules import shared, devices, sd_models
import lora
from locon_compvis import LoConModule, LoConNetworkCompvis, create_network_and_apply_compvis


try:
    '''
    Hijack Additional Network extension
    '''
    # skip addnet since don't support new version
    raise
    now_dir = os.path.dirname(os.path.abspath(__file__))
    addnet_path = os.path.join(now_dir, '..', '..', 'sd-webui-additional-networks/scripts')
    sys.path.append(addnet_path)
    import lora_compvis
    import scripts
    scripts.lora_compvis = lora_compvis
    scripts.lora_compvis.LoRAModule = LoConModule
    scripts.lora_compvis.LoRANetworkCompvis = LoConNetworkCompvis
    scripts.lora_compvis.create_network_and_apply_compvis = create_network_and_apply_compvis
    print('LoCon Extension hijack addnet extension successfully')
except:
    print('Additional Network extension not installed, Only hijack built-in lora')


'''
Hijack sd-webui LoRA
'''
re_digits = re.compile(r"\d+")

re_unet_conv_in = re.compile(r"lora_unet_conv_in(.+)")
re_unet_conv_out = re.compile(r"lora_unet_conv_out(.+)")
re_unet_time_embed = re.compile(r"lora_unet_time_embedding_linear_(\d+)(.+)")

re_unet_down_blocks = re.compile(r"lora_unet_down_blocks_(\d+)_attentions_(\d+)_(.+)")
re_unet_mid_blocks = re.compile(r"lora_unet_mid_block_attentions_(\d+)_(.+)")
re_unet_up_blocks = re.compile(r"lora_unet_up_blocks_(\d+)_attentions_(\d+)_(.+)")

re_unet_down_blocks_res = re.compile(r"lora_unet_down_blocks_(\d+)_resnets_(\d+)_(.+)")
re_unet_mid_blocks_res = re.compile(r"lora_unet_mid_block_resnets_(\d+)_(.+)")
re_unet_up_blocks_res = re.compile(r"lora_unet_up_blocks_(\d+)_resnets_(\d+)_(.+)")

re_unet_downsample = re.compile(r"lora_unet_down_blocks_(\d+)_downsamplers_0_conv(.+)")
re_unet_upsample = re.compile(r"lora_unet_up_blocks_(\d+)_upsamplers_0_conv(.+)")

re_text_block = re.compile(r"lora_te_text_model_encoder_layers_(\d+)_(.+)")


def convert_diffusers_name_to_compvis(key):
    def match(match_list, regex):
        r = re.match(regex, key)
        if not r:
            return False

        match_list.clear()
        match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()])
        return True

    m = []
    
    if match(m, re_unet_conv_in):
        return f'diffusion_model_input_blocks_0_0{m[0]}'
    
    if match(m, re_unet_conv_out):
        return f'diffusion_model_out_2{m[0]}'
    
    if match(m, re_unet_time_embed):
        return f"diffusion_model_time_embed_{m[0]*2-2}{m[1]}"
    
    if match(m, re_unet_down_blocks):
        return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[1]}_1_{m[2]}"

    if match(m, re_unet_mid_blocks):
        return f"diffusion_model_middle_block_1_{m[1]}"

    if match(m, re_unet_up_blocks):
        return f"diffusion_model_output_blocks_{m[0] * 3 + m[1]}_1_{m[2]}"

    if match(m, re_unet_down_blocks_res):
        block = f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[1]}_0_"
        if m[2].startswith('conv1'):
            return f"{block}in_layers_2{m[2][len('conv1'):]}"
        elif m[2].startswith('conv2'):
            return f"{block}out_layers_3{m[2][len('conv2'):]}"
        elif m[2].startswith('time_emb_proj'):
            return f"{block}emb_layers_1{m[2][len('time_emb_proj'):]}"
        elif m[2].startswith('conv_shortcut'):
            return f"{block}skip_connection{m[2][len('conv_shortcut'):]}"

    if match(m, re_unet_mid_blocks_res):
        block = f"diffusion_model_middle_block_{m[0]*2}_"
        if m[1].startswith('conv1'):
            return f"{block}in_layers_2{m[1][len('conv1'):]}"
        elif m[1].startswith('conv2'):
            return f"{block}out_layers_3{m[1][len('conv2'):]}"
        elif m[1].startswith('time_emb_proj'):
            return f"{block}emb_layers_1{m[1][len('time_emb_proj'):]}"
        elif m[1].startswith('conv_shortcut'):
            return f"{block}skip_connection{m[1][len('conv_shortcut'):]}"

    if match(m, re_unet_up_blocks_res):
        block = f"diffusion_model_output_blocks_{m[0] * 3 + m[1]}_0_"
        if m[2].startswith('conv1'):
            return f"{block}in_layers_2{m[2][len('conv1'):]}"
        elif m[2].startswith('conv2'):
            return f"{block}out_layers_3{m[2][len('conv2'):]}"
        elif m[2].startswith('time_emb_proj'):
            return f"{block}emb_layers_1{m[2][len('time_emb_proj'):]}"
        elif m[2].startswith('conv_shortcut'):
            return f"{block}skip_connection{m[2][len('conv_shortcut'):]}"

    if match(m, re_unet_downsample):
        return f"diffusion_model_input_blocks_{m[0]*3+3}_0_op{m[1]}"

    if match(m, re_unet_upsample):
        return f"diffusion_model_output_blocks_{m[0]*3 + 2}_{1+(m[0]!=0)}_conv{m[1]}"

    if match(m, re_text_block):
        return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}"

    return key


class LoraOnDisk:
    def __init__(self, name, filename):
        self.name = name
        self.filename = filename


class LoraModule:
    def __init__(self, name):
        self.name = name
        self.multiplier = 1.0
        self.modules = {}
        self.mtime = None


class FakeModule(torch.nn.Module):
    def __init__(self, weight, func):
        super().__init__()
        self.weight = weight
        self.func = func
    
    def forward(self, x):
        return self.func(x)


class FullModule:
    def __init__(self):
        self.weight = None
        self.alpha = None
        self.op = None
        self.extra_args = {}
        self.shape = None
        self.up = None
    
    def down(self, x):
        return x
    
    def inference(self, x):
        return self.op(x, self.weight, **self.extra_args)


class LoraUpDownModule:
    def __init__(self):
        self.up_model = None
        self.mid_model = None
        self.down_model = None
        self.alpha = None
        self.dim = None
        self.op = None
        self.extra_args = {}
        self.shape = None
        self.bias = None
        self.up = None
    
    def down(self, x):
        return x
    
    def inference(self, x):
        if hasattr(self, 'bias') and isinstance(self.bias, torch.Tensor):
            out_dim = self.up_model.weight.size(0)
            rank = self.down_model.weight.size(0)
            rebuild_weight = (
                self.up_model.weight.reshape(out_dim, -1) @ self.down_model.weight.reshape(rank, -1)
                + self.bias
            ).reshape(self.shape)
            return self.op(
                x, rebuild_weight,
                **self.extra_args
            )
        else:
            if self.mid_model is None:
                return self.up_model(self.down_model(x))
            else:
                return self.up_model(self.mid_model(self.down_model(x)))


def pro3(t, wa, wb):
    temp = torch.einsum('i j k l, j r -> i r k l', t, wb)
    return torch.einsum('i j k l, i r -> r j k l', temp, wa)


class LoraHadaModule:
    def __init__(self):
        self.t1 = None
        self.w1a = None
        self.w1b = None
        self.t2 = None
        self.w2a = None
        self.w2b = None
        self.alpha = None
        self.dim = None
        self.op = None
        self.extra_args = {}
        self.shape = None
        self.bias = None
        self.up = None
    
    def down(self, x):
        return x
    
    def inference(self, x):
        if hasattr(self, 'bias') and isinstance(self.bias, torch.Tensor):
            bias = self.bias
        else:
            bias = 0
        
        if self.t1 is None:
            return self.op(
                x,
                ((self.w1a @ self.w1b) * (self.w2a @ self.w2b) + bias).view(self.shape),
                **self.extra_args
            )
        else:
            return self.op(
                x,
                (pro3(self.t1, self.w1a, self.w1b) 
                 * pro3(self.t2, self.w2a, self.w2b) + bias).view(self.shape),
                **self.extra_args
            )


CON_KEY = {
    "lora_up.weight",
    "lora_down.weight",
    "lora_mid.weight"
}
HADA_KEY = {
    "hada_t1",
    "hada_w1_a",
    "hada_w1_b",
    "hada_t2",
    "hada_w2_a",
    "hada_w2_b",
}

def load_lora(name, filename):
    lora = LoraModule(name)
    lora.mtime = os.path.getmtime(filename)

    sd = sd_models.read_state_dict(filename)

    keys_failed_to_match = []

    for key_diffusers, weight in sd.items():
        fullkey = convert_diffusers_name_to_compvis(key_diffusers)
        key, lora_key = fullkey.split(".", 1)
        
        sd_module = shared.sd_model.lora_layer_mapping.get(key, None)
        if sd_module is None:
            keys_failed_to_match.append(key_diffusers)
            continue

        lora_module = lora.modules.get(key, None)
        if lora_module is None:
            lora_module = LoraUpDownModule()
            lora.modules[key] = lora_module

        if lora_key == "alpha":
            lora_module.alpha = weight.item()
            continue
        
        if lora_key == "diff":
            weight = weight.to(device=devices.device, dtype=devices.dtype)
            weight.requires_grad_(False)
            lora_module = FullModule()
            lora.modules[key] = lora_module
            lora_module.weight = weight
            lora_module.alpha = weight.size(1)
            lora_module.up = FakeModule(
                weight,
                lora_module.inference
            )
            lora_module.up.to(device=devices.device, dtype=devices.dtype)
            if len(weight.shape)==2:
                lora_module.op = torch.nn.functional.linear
                lora_module.extra_args = {
                    'bias': None
                }
            else:
                lora_module.op = torch.nn.functional.conv2d
                lora_module.extra_args = {
                    'stride': sd_module.stride,
                    'padding': sd_module.padding,
                    'bias': None
                }
            continue
        
        if 'bias_' in lora_key:
            if lora_module.bias is None:
                lora_module.bias = [None, None, None]
            if 'bias_indices' == lora_key:
                lora_module.bias[0] = weight
            elif 'bias_values' == lora_key:
                lora_module.bias[1] = weight
            elif 'bias_size' == lora_key:
                lora_module.bias[2] = weight
            
            if all((i is not None) for i in lora_module.bias):
                print('build bias')
                lora_module.bias = torch.sparse_coo_tensor(
                    lora_module.bias[0],
                    lora_module.bias[1],
                    tuple(lora_module.bias[2]),
                ).to(device=devices.device, dtype=devices.dtype)
                lora_module.bias.requires_grad_(False)
            continue
        
        if lora_key in CON_KEY:
            if type(sd_module) == torch.nn.Linear:
                weight = weight.reshape(weight.shape[0], -1)
                module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
                lora_module.op = torch.nn.functional.linear
            elif type(sd_module) == torch.nn.Conv2d:
                if lora_key == "lora_down.weight":
                    if weight.shape[2] != 1 or weight.shape[3] != 1:
                        module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], sd_module.kernel_size, sd_module.stride, sd_module.padding, bias=False)
                    else:
                        module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
                elif lora_key == "lora_mid.weight":
                    module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], sd_module.kernel_size, sd_module.stride, sd_module.padding, bias=False)
                elif lora_key == "lora_up.weight":
                    module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
                lora_module.op = torch.nn.functional.conv2d
                lora_module.extra_args = {
                    'stride': sd_module.stride,
                    'padding': sd_module.padding
                }
            else:
                assert False, f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}'
            
            lora_module.shape = sd_module.weight.shape
            with torch.no_grad():
                module.weight.copy_(weight)

            module.to(device=devices.device, dtype=devices.dtype)
            module.requires_grad_(False)

            if lora_key == "lora_up.weight":
                lora_module.up_model = module
                lora_module.up = FakeModule(
                    lora_module.up_model.weight,
                    lora_module.inference
                )
            elif lora_key == "lora_mid.weight":
                lora_module.mid_model = module
            elif lora_key == "lora_down.weight":
                lora_module.down_model = module
                lora_module.dim = weight.shape[0]
        elif lora_key in HADA_KEY:
            if type(lora_module) != LoraHadaModule:
                alpha = lora_module.alpha
                bias = lora_module.bias
                lora_module = LoraHadaModule()
                lora_module.alpha = alpha
                lora_module.bias = bias
                lora.modules[key] = lora_module
            lora_module.shape = sd_module.weight.shape
            
            weight = weight.to(device=devices.device, dtype=devices.dtype)
            weight.requires_grad_(False)
            
            if lora_key == 'hada_w1_a':
                lora_module.w1a = weight
                if lora_module.up is None:
                    lora_module.up = FakeModule(
                        lora_module.w1a,
                        lora_module.inference
                    )
            elif lora_key == 'hada_w1_b':
                lora_module.w1b = weight
                lora_module.dim = weight.shape[0]
            elif lora_key == 'hada_w2_a':
                lora_module.w2a = weight
            elif lora_key == 'hada_w2_b':
                lora_module.w2b = weight
            elif lora_key == 'hada_t1':
                lora_module.t1 = weight
                lora_module.up = FakeModule(
                    lora_module.t1,
                    lora_module.inference
                )
            elif lora_key == 'hada_t2':
                lora_module.t2 = weight
            
            if type(sd_module) == torch.nn.Linear:
                lora_module.op = torch.nn.functional.linear
            elif type(sd_module) == torch.nn.Conv2d:
                lora_module.op = torch.nn.functional.conv2d
                lora_module.extra_args = {
                    'stride': sd_module.stride,
                    'padding': sd_module.padding
                }
            else:
                assert False, f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}'
            
        else:
            assert False, f'Bad Lora layer name: {key_diffusers} - must end in lora_up.weight, lora_down.weight or alpha'

    if len(keys_failed_to_match) > 0:
        print(shared.sd_model.lora_layer_mapping)
        print(f"Failed to match keys when loading Lora {filename}: {keys_failed_to_match}")

    return lora


def lora_forward(module, input, res):
    if len(lora.loaded_loras) == 0:
        return res
    
    lora_layer_name = getattr(module, 'lora_layer_name', None)
    for lora_m in lora.loaded_loras:
        module = lora_m.modules.get(lora_layer_name, None)
        if module is not None and lora_m.multiplier:
            if hasattr(module, 'up'):
                scale = lora_m.multiplier * (module.alpha / module.up.weight.size(1) if module.alpha else 1.0)
            else:
                scale = lora_m.multiplier * (module.alpha / module.dim if module.alpha else 1.0)
            
            if shared.opts.lora_apply_to_outputs and res.shape == input.shape:
                x = res
            else:
                x = input
            
            if hasattr(module, 'inference'):
                res = res + module.inference(x) * scale
            elif hasattr(module, 'up'):
                res = res + module.up(module.down(x)) * scale
            else:
                raise NotImplementedError(
                    "Your settings, extensions or models are not compatible with each other."
                )
    return res


lora.convert_diffusers_name_to_compvis = convert_diffusers_name_to_compvis
lora.load_lora = load_lora
lora.lora_forward = lora_forward
print('LoCon Extension hijack built-in lora successfully')