File size: 7,440 Bytes
d43d2a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import math

import torch
import torch.nn as nn
import torch.nn.functional as F


class HadaWeight(torch.autograd.Function):
    @staticmethod
    def forward(ctx, orig_weight, w1a, w1b, w2a, w2b, scale=torch.tensor(1)):
        ctx.save_for_backward(w1a, w1b, w2a, w2b, scale)
        diff_weight = ((w1a@w1b)*(w2a@w2b)) * scale
        return orig_weight.reshape(diff_weight.shape) + diff_weight

    @staticmethod
    def backward(ctx, grad_out):
        (w1a, w1b, w2a, w2b, scale) = ctx.saved_tensors
        grad_out = grad_out * scale
        temp = grad_out*(w2a@w2b)
        grad_w1a = temp @ w1b.T
        grad_w1b = w1a.T @ temp

        temp = grad_out * (w1a@w1b)
        grad_w2a = temp @ w2b.T
        grad_w2b = w2a.T @ temp
        
        del temp
        return grad_out, grad_w1a, grad_w1b, grad_w2a, grad_w2b, None


class HadaWeightCP(torch.autograd.Function):
    @staticmethod
    def forward(ctx, orig_weight, t1, w1a, w1b, t2, w2a, w2b, scale=torch.tensor(1)):
        ctx.save_for_backward(t1, w1a, w1b, t2, w2a, w2b, scale)
        
        rebuild1 = torch.einsum('i j k l, j r, i p -> p r k l', t1, w1b, w1a)
        rebuild2 = torch.einsum('i j k l, j r, i p -> p r k l', t2, w2b, w2a)
        
        return orig_weight + rebuild1*rebuild2*scale

    @staticmethod
    def backward(ctx, grad_out):
        (t1, w1a, w1b, t2, w2a, w2b, scale) = ctx.saved_tensors
        
        grad_out = grad_out*scale
        
        temp = torch.einsum('i j k l, j r -> i r k l', t2, w2b)
        rebuild = torch.einsum('i j k l, i r -> r j k l', temp, w2a)
        
        grad_w = rebuild*grad_out
        del rebuild
        
        grad_w1a = torch.einsum('r j k l, i j k l -> r i', temp, grad_w)
        grad_temp = torch.einsum('i j k l, i r -> r j k l', grad_w, w1a.T)
        del grad_w, temp
        
        grad_w1b = torch.einsum('i r k l, i j k l -> r j', t1, grad_temp)
        grad_t1 = torch.einsum('i j k l, j r -> i r k l', grad_temp, w1b.T)
        del grad_temp
        
        temp = torch.einsum('i j k l, j r -> i r k l', t1, w1b)
        rebuild = torch.einsum('i j k l, i r -> r j k l', temp, w1a)
        
        grad_w = rebuild*grad_out
        del rebuild
        
        grad_w2a = torch.einsum('r j k l, i j k l -> r i', temp, grad_w)
        grad_temp = torch.einsum('i j k l, i r -> r j k l', grad_w, w2a.T)
        del grad_w, temp
        
        grad_w2b = torch.einsum('i r k l, i j k l -> r j', t2, grad_temp)
        grad_t2 = torch.einsum('i j k l, j r -> i r k l', grad_temp, w2b.T)
        del grad_temp
        return grad_out, grad_t1, grad_w1a, grad_w1b, grad_t2, grad_w2a, grad_w2b, None


def make_weight(orig_weight, w1a, w1b, w2a, w2b, scale):
    return HadaWeight.apply(orig_weight, w1a, w1b, w2a, w2b, scale)


def make_weight_cp(orig_weight, t1, w1a, w1b, t2, w2a, w2b, scale):
    return HadaWeightCP.apply(orig_weight, t1, w1a, w1b, t2, w2a, w2b, scale)


class LohaModule(nn.Module):
    """
    Hadamard product Implementaion for Low Rank Adaptation
    """

    def __init__(
        self, 
        lora_name, 
        org_module: nn.Module, 
        multiplier=1.0, lora_dim=4, alpha=1, dropout=0.,
        use_cp=True,
    ):
        """ if alpha == 0 or None, alpha is rank (no scaling). """
        super().__init__()
        self.lora_name = lora_name
        self.lora_dim = lora_dim
        self.cp=False
        
        self.shape = org_module.weight.shape
        if org_module.__class__.__name__ == 'Conv2d':
            in_dim = org_module.in_channels
            k_size = org_module.kernel_size
            out_dim = org_module.out_channels
            self.cp = use_cp and k_size!=(1, 1)
            if self.cp:
                shape = (out_dim, in_dim, *k_size)
            else:
                shape = (out_dim, in_dim*k_size[0]*k_size[1])
            self.op = F.conv2d
            self.extra_args = {
                "stride": org_module.stride,
                "padding": org_module.padding,
                "dilation": org_module.dilation,
                "groups": org_module.groups
            }
        else:
            in_dim = org_module.in_features
            out_dim = org_module.out_features
            shape = (out_dim, in_dim)
            self.op = F.linear
            self.extra_args = {}
        
        if self.cp:
            self.hada_t1 = nn.Parameter(torch.empty(lora_dim, lora_dim, shape[2], shape[3]))
            self.hada_w1_a = nn.Parameter(torch.empty(lora_dim, shape[0])) # out_dim, 1-mode
            self.hada_w1_b = nn.Parameter(torch.empty(lora_dim, shape[1])) # in_dim , 2-mode
            
            self.hada_t2 = nn.Parameter(torch.empty(lora_dim, lora_dim, shape[2], shape[3]))
            self.hada_w2_a = nn.Parameter(torch.empty(lora_dim, shape[0])) # out_dim, 1-mode
            self.hada_w2_b = nn.Parameter(torch.empty(lora_dim, shape[1])) # in_dim , 2-mode
        else:
            self.hada_w1_a = nn.Parameter(torch.empty(shape[0], lora_dim))
            self.hada_w1_b = nn.Parameter(torch.empty(lora_dim, shape[1]))
            
            self.hada_w2_a = nn.Parameter(torch.empty(shape[0], lora_dim))
            self.hada_w2_b = nn.Parameter(torch.empty(lora_dim, shape[1]))
        
        if dropout:
            self.dropout = nn.Dropout(dropout)
        else:
            self.dropout = nn.Identity()
        
        if type(alpha) == torch.Tensor:
            alpha = alpha.detach().float().numpy()  # without casting, bf16 causes error
        alpha = lora_dim if alpha is None or alpha == 0 else alpha
        self.scale = alpha / self.lora_dim
        self.register_buffer('alpha', torch.tensor(alpha)) # 定数として扱える

        # Need more experiences on init method
        if self.cp:
            torch.nn.init.normal_(self.hada_t1, std=0.1)
            torch.nn.init.normal_(self.hada_t2, std=0.1)
        torch.nn.init.normal_(self.hada_w1_b, std=1)
        torch.nn.init.normal_(self.hada_w2_b, std=0.01)
        torch.nn.init.normal_(self.hada_w1_a, std=1)
        torch.nn.init.constant_(self.hada_w2_a, 0)

        self.multiplier = multiplier
        self.org_module = [org_module] # remove in applying
        self.grad_ckpt = False

    def apply_to(self):
        self.org_module[0].forward = self.forward

    def get_weight(self):
        d_weight = self.hada_w1_a @ self.hada_w1_b
        d_weight *= self.hada_w2_a @ self.hada_w2_b
        return (d_weight).reshape(self.shape)

    @torch.enable_grad()
    def forward(self, x):
        # print(torch.mean(torch.abs(self.orig_w1a.to(x.device) - self.hada_w1_a)), end='\r')
        if self.cp:
            weight = make_weight_cp(
                self.org_module[0].weight.data, 
                self.hada_t1, self.hada_w1_a, self.hada_w1_b,
                self.hada_t1, self.hada_w2_a, self.hada_w2_b,
                scale = torch.tensor(self.scale*self.multiplier),
            )
        else:
            weight = make_weight(
                self.org_module[0].weight.data, 
                self.hada_w1_a, self.hada_w1_b,
                self.hada_w2_a, self.hada_w2_b,
                scale = torch.tensor(self.scale*self.multiplier),
            )
        
        bias = None if self.org_module[0].bias is None else self.org_module[0].bias.data
        return self.op(
            x, 
            weight.view(self.shape),
            bias,
            **self.extra_args
        )