File size: 34,651 Bytes
a55caa3 43d9b29 a55caa3 43d9b29 a55caa3 43d9b29 a55caa3 43d9b29 a55caa3 43d9b29 a55caa3 43d9b29 a55caa3 43d9b29 a55caa3 43d9b29 a55caa3 43d9b29 a55caa3 43d9b29 a55caa3 43d9b29 a55caa3 43d9b29 a55caa3 43d9b29 a55caa3 43d9b29 a55caa3 43d9b29 a55caa3 43d9b29 a55caa3 43d9b29 a55caa3 43d9b29 a55caa3 43d9b29 a55caa3 43d9b29 a55caa3 43d9b29 a55caa3 43d9b29 a55caa3 43d9b29 a55caa3 43d9b29 a55caa3 43d9b29 a55caa3 43d9b29 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 |
import cv2
import os
import re
import torch
import shutil
import math
import numpy as np
import gradio as gr
import os.path
import random
from pprint import pprint
import modules.ui
import modules.scripts as scripts
from PIL import Image, ImageFont, ImageDraw
from fonts.ttf import Roboto
import modules.shared as shared
from modules import devices, sd_models, images,extra_networks
from modules.shared import opts, state
from modules.processing import process_images, Processed
lxyz = ""
lzyx = ""
BLOCKS=["encoder",
"diffusion_model_input_blocks_0_",
"diffusion_model_input_blocks_1_",
"diffusion_model_input_blocks_2_",
"diffusion_model_input_blocks_3_",
"diffusion_model_input_blocks_4_",
"diffusion_model_input_blocks_5_",
"diffusion_model_input_blocks_6_",
"diffusion_model_input_blocks_7_",
"diffusion_model_input_blocks_8_",
"diffusion_model_input_blocks_9_",
"diffusion_model_input_blocks_10_",
"diffusion_model_input_blocks_11_",
"diffusion_model_middle_block_",
"diffusion_model_output_blocks_0_",
"diffusion_model_output_blocks_1_",
"diffusion_model_output_blocks_2_",
"diffusion_model_output_blocks_3_",
"diffusion_model_output_blocks_4_",
"diffusion_model_output_blocks_5_",
"diffusion_model_output_blocks_6_",
"diffusion_model_output_blocks_7_",
"diffusion_model_output_blocks_8_",
"diffusion_model_output_blocks_9_",
"diffusion_model_output_blocks_10_",
"diffusion_model_output_blocks_11_"]
loopstopper = True
ATYPES =["none","Block ID","values","seed","Original Weights"]
class Script(modules.scripts.Script):
def title(self):
return "LoRA Block Weight"
def show(self, is_img2img):
return modules.scripts.AlwaysVisible
def ui(self, is_img2img):
import lora
LWEIGHTSPRESETS="\
NONE:0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0\n\
ALL:1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1\n\
INS:1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0\n\
IND:1,0,0,0,1,1,1,0,0,0,0,0,0,0,0,0,0\n\
INALL:1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0\n\
MIDD:1,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,0\n\
OUTD:1,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0\n\
OUTS:1,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,1\n\
OUTALL:1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1\n\
ALL0.5:0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5"
runorigin = scripts.scripts_txt2img.run
runorigini = scripts.scripts_img2img.run
path_root = scripts.basedir()
extpath = os.path.join(path_root,"extensions","sd-webui-lora-block-weight","scripts", "lbwpresets.txt")
filepath = os.path.join(path_root,"scripts", "lbwpresets.txt")
if os.path.isfile(extpath) and not os.path.isfile(filepath):
shutil.move(extpath,filepath)
lbwpresets=""
try:
with open(filepath) as f:
lbwpresets = f.read()
except OSError as e:
lbwpresets=LWEIGHTSPRESETS
loraratios=lbwpresets.splitlines()
lratios={}
for i,l in enumerate(loraratios):
lratios[l.split(":")[0]]=l.split(":")[1]
rasiostags = [k for k in lratios.keys()]
rasiostags = ",".join(rasiostags)
with gr.Accordion("LoRA Block Weight",open = False):
with gr.Row():
with gr.Column(min_width = 50, scale=1):
lbw_useblocks = gr.Checkbox(value = True,label="Active",interactive =True,elem_id="lbw_active")
with gr.Column(scale=5):
bw_ratiotags= gr.TextArea(label="",lines=2,value=rasiostags,visible =True,interactive =True,elem_id="lbw_ratios")
with gr.Accordion("XYZ plot",open = False):
gr.HTML(value="<p>changeable blocks : BASE,IN00,IN01,IN02,IN03,IN04,IN05,IN06,IN07,IN08,IN09,IN10,IN11,M00,OUT00,OUT01,OUT02,OUT03,OUT04,OUT05,OUT06,OUT07,OUT08,OUT09,OUT10,OUT11</p>")
xyzsetting = gr.Radio(label = "Active",choices = ["Disable","XYZ plot","Effective Block Analyzer"], value ="Disable",type = "index")
with gr.Row(visible = False) as esets:
diffcol = gr.Radio(label = "diff image color",choices = ["black","white"], value ="black",type = "value",interactive =True)
revxy = gr.Checkbox(value = False,label="change X-Y",interactive =True,elem_id="lbw_changexy")
thresh = gr.Textbox(label="difference threshold",lines=1,value="20",interactive =True,elem_id="diff_thr")
xtype = gr.Dropdown(label="X Types ", choices=[x for x in ATYPES], value=ATYPES [2],interactive =True,elem_id="lbw_xtype")
xmen = gr.Textbox(label="X Values ",lines=1,value="0,0.25,0.5,0.75,1",interactive =True,elem_id="lbw_xmen")
ytype = gr.Dropdown(label="Y Types ", choices=[y for y in ATYPES], value=ATYPES [1],interactive =True,elem_id="lbw_ytype")
ymen = gr.Textbox(label="Y Values " ,lines=1,value="IN05-OUT05",interactive =True,elem_id="lbw_ymen")
ztype = gr.Dropdown(label="Z type ", choices=[z for z in ATYPES], value=ATYPES[0],interactive =True,elem_id="lbw_ztype")
zmen = gr.Textbox(label="Z values ",lines=1,value="",interactive =True,elem_id="lbw_zmen")
exmen = gr.Textbox(label="Range",lines=1,value="0.5,1",interactive =True,elem_id="lbw_exmen",visible = False)
eymen = gr.Textbox(label="Blocks" ,lines=1,value="BASE,IN00,IN01,IN02,IN03,IN04,IN05,IN06,IN07,IN08,IN09,IN10,IN11,M00,OUT00,OUT01,OUT02,OUT03,OUT04,OUT05,OUT06,OUT07,OUT08,OUT09,OUT10,OUT11",interactive =True,elem_id="lbw_eymen",visible = False)
with gr.Accordion("Weights setting",open = True):
with gr.Row():
reloadtext = gr.Button(value="Reload Presets",variant='primary',elem_id="lbw_reload")
reloadtags = gr.Button(value="Reload Tags",variant='primary',elem_id="lbw_reload")
savetext = gr.Button(value="Save Presets",variant='primary',elem_id="lbw_savetext")
openeditor = gr.Button(value="Open TextEditor",variant='primary',elem_id="lbw_openeditor")
lbw_loraratios = gr.TextArea(label="",value=lbwpresets,visible =True,interactive = True,elem_id="lbw_ratiospreset")
import subprocess
def openeditors():
subprocess.Popen(['start', filepath], shell=True)
def reloadpresets():
try:
with open(filepath) as f:
return f.read()
except OSError as e:
pass
def tagdicter(presets):
presets=presets.splitlines()
wdict={}
for l in presets:
w=[]
if ":" in l :
key = l.split(":",1)[0]
w = l.split(":",1)[1]
if len([w for w in w.split(",")]) == 17 or len([w for w in w.split(",")]) ==26:
wdict[key.strip()]=w
return ",".join(list(wdict.keys()))
def savepresets(text):
with open(filepath,mode = 'w') as f:
f.write(text)
reloadtext.click(fn=reloadpresets,inputs=[],outputs=[lbw_loraratios])
reloadtags.click(fn=tagdicter,inputs=[lbw_loraratios],outputs=[bw_ratiotags])
savetext.click(fn=savepresets,inputs=[lbw_loraratios],outputs=[])
openeditor.click(fn=openeditors,inputs=[],outputs=[])
def urawaza(active):
if active > 0:
for obj in scripts.scripts_txt2img.alwayson_scripts:
if "lora_block_weight" in obj.filename:
scripts.scripts_txt2img.selectable_scripts.append(obj)
scripts.scripts_txt2img.titles.append("LoRA Block Weight")
for obj in scripts.scripts_img2img.alwayson_scripts:
if "lora_block_weight" in obj.filename:
scripts.scripts_img2img.selectable_scripts.append(obj)
scripts.scripts_img2img.titles.append("LoRA Block Weight")
scripts.scripts_txt2img.run = newrun
scripts.scripts_img2img.run = newrun
if active == 1:return [*[gr.update(visible = True) for x in range(6)],*[gr.update(visible = False) for x in range(3)]]
else:return [*[gr.update(visible = False) for x in range(6)],*[gr.update(visible = True) for x in range(3)]]
else:
scripts.scripts_txt2img.run = runorigin
scripts.scripts_img2img.run = runorigini
return [*[gr.update(visible = True) for x in range(6)],*[gr.update(visible = False) for x in range(3)]]
xyzsetting.change(fn=urawaza,inputs=[xyzsetting],outputs =[xtype,xmen,ytype,ymen,ztype,zmen,exmen,eymen,esets])
return lbw_loraratios,lbw_useblocks,xyzsetting,xtype,xmen,ytype,ymen,ztype,zmen,exmen,eymen,diffcol,thresh,revxy
def process(self, p, loraratios,useblocks,xyzsetting,xtype,xmen,ytype,ymen,ztype,zmen,exmen,eymen,diffcol,thresh,revxy):
#print("self =",self,"p =",p,"presets =",loraratios,"useblocks =",useblocks,"xyzsettings =",xyzsetting,"xtype =",xtype,"xmen =",xmen,"ytype =",ytype,"ymen =",ymen,"ztype =",ztype,"zmen =",zmen)
if useblocks:
loraratios=loraratios.splitlines()
lratios={}
for l in loraratios:
l0=l.split(":",1)[0]
lratios[l0.strip()]=l.split(":",1)[1]
if xyzsetting and "XYZ" in p.prompt:
lratios["XYZ"] = lxyz
lratios["ZYX"] = lzyx
loradealer(p,lratios)
return
def postprocess(self, p, processed, *args):
import lora
lora.loaded_loras.clear()
def run(self,p,presets,useblocks,xyzsetting,xtype,xmen,ytype,ymen,ztype,zmen,exmen,eymen,diffcol,thresh,revxy):
if xyzsetting >0:
import lora
loraratios=presets.splitlines()
lratios={}
for l in loraratios:
l0=l.split(":",1)[0]
lratios[l0.strip()]=l.split(":",1)[1]
if "XYZ" in p.prompt:
base = lratios["XYZ"] if "XYZ" in lratios.keys() else "1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1"
else: return
if xyzsetting > 1:
xmen,ymen = exmen,eymen
xtype,ytype = "values","ID"
ebase = xmen.split(",")[1]
ebase = [ebase.strip()]*26
base = ",".join(ebase)
ztype = ""
#ATYPES =["none","Block ID","values","seed","Base Weights"]
def dicedealer(am):
for i,a in enumerate(am):
if a =="-1": am[i] = str(random.randrange(4294967294))
print(f"the die was thrown : {am}")
if p.seed == -1: p.seed = str(random.randrange(4294967294))
#print(f"xs:{xmen},ys:{ymen},zs:{zmen}")
def adjuster(a,at):
if "none" in at:a = ""
a = [a.strip() for a in a.split(',')]
if "seed" in at:dicedealer(a)
return a
xs = adjuster(xmen,xtype)
ys = adjuster(ymen,ytype)
zs = adjuster(zmen,ztype)
ids = alpha =seed = ""
p.batch_size = 1
print(f"xs:{xs},ys:{ys},zs:{zs}")
images = []
def weightsdealer(alpha,ids,base):
blockid17=["BASE","IN01","IN02","IN04","IN05","IN07","IN08","M00","OUT03","OUT04","OUT05","OUT06","OUT07","OUT08","OUT09","OUT10","OUT11"]
blockid26=["BASE","IN00","IN01","IN02","IN03","IN04","IN05","IN06","IN07","IN08","IN09","IN10","IN11","M00","OUT00","OUT01","OUT02","OUT03","OUT04","OUT05","OUT06","OUT07","OUT08","OUT09","OUT10","OUT11"]
#print(f"weights from : {base}")
ids = [z.strip() for z in ids.split(' ')]
weights_t = [w.strip() for w in base.split(',')]
blockid = blockid17 if len(weights_t) ==17 else blockid26
if ids[0]!="NOT":
flagger=[False]*len(weights_t)
changer = True
else:
flagger=[True]*len(weights_t)
changer = False
for id in ids:
if id =="NOT":continue
if "-" in id:
it = [it.strip() for it in id.split('-')]
if blockid.index(it[1]) > blockid.index(it[0]):
flagger[blockid.index(it[0]):blockid.index(it[1])+1] = [changer]*(blockid.index(it[1])-blockid.index(it[0])+1)
else:
flagger[blockid.index(it[1]):blockid.index(it[0])+1] = [changer]*(blockid.index(it[0])-blockid.index(it[1])+1)
else:
flagger[blockid.index(id)] =changer
for i,f in enumerate(flagger):
if f:weights_t[i]=alpha
outext = ",".join(weights_t)
#print(f"weights changed: {outext}")
return outext
def xyzdealer(a,at):
nonlocal ids,alpha,p,base,c_base
if "ID" in at:return
if "values" in at:alpha = a
if "seed" in at:
p.seed = int(a)
if "Weights" in at:base =c_base = lratios[a]
grids = []
images =[]
totalcount = len(xs)*len(ys)*len(zs) if xyzsetting < 2 else len(xs)*len(ys)*len(zs) //2 +1
shared.total_tqdm.updateTotal(totalcount)
xc = yc =zc = 0
state.job_count = totalcount
totalcount = len(xs)*len(ys)*len(zs)
for z in zs:
images = []
yc = 0
xyzdealer(z,ztype)
for y in ys:
xc = 0
xyzdealer(y,ytype)
for x in xs:
xyzdealer(x,xtype)
if "ID" in xtype:
if "values" in ytype:c_base = weightsdealer(y,x,base)
if "values" in ztype:c_base = weightsdealer(z,x,base)
if "ID" in ytype:
if "values" in xtype:c_base = weightsdealer(x,y,base)
if "values" in ztype:c_base = weightsdealer(z,y,base)
if "ID" in ztype:
if "values" in xtype:c_base = weightsdealer(x,z,base)
if "values" in ytype:c_base = weightsdealer(y,z,base)
print(f"X:{xtype}, {x},Y: {ytype},{y}, Z:{ztype},{z}, base:{c_base} ({len(xs)*len(ys)*zc + yc*len(xs) +xc +1}/{totalcount})")
global lxyz,lzyx
lxyz = c_base
cr_base = c_base.split(",")
cr_base_t=[]
for x in cr_base:
if x != "R" and x != "U":
cr_base_t.append(str(1-float(x)))
else:
cr_base_t.append(x)
lzyx = ",".join(cr_base_t)
if not(xc == 1 and not (yc ==0 ) and xyzsetting >1):
lora.loaded_loras.clear()
processed:Processed = process_images(p)
images.append(processed.images[0])
xc += 1
yc += 1
zc += 1
origin = loranames(processed.all_prompts) + ", "+ znamer(ztype,z,base)
if xyzsetting >1: images,xs,ys = effectivechecker(images,xs,ys,diffcol,thresh,revxy)
grids.append(smakegrid(images,xs,ys,origin,p))
processed.images= grids
lora.loaded_loras.clear()
return processed
def znamer(at,a,base):
if "ID" in at:return f"Block : {a}"
if "values" in at:return f"value : {a}"
if "seed" in at:return f"seed : {a}"
if "Weights" in at:return f"original weights :\n {base}"
else: return ""
def loranames(all_prompts):
_, extra_network_data = extra_networks.parse_prompts(all_prompts[0:1])
calledloras = extra_network_data["lora"]
names = ""
for called in calledloras:
if len(called.items) <3:continue
names += called.items[0]
return names
def loradealer(p,lratios):
_, extra_network_data = extra_networks.parse_prompts(p.all_prompts[0:1])
calledloras = extra_network_data["lora"]
lorans = []
lorars = []
for called in calledloras:
if len(called.items) <3:continue
if called.items[2] in lratios or called.items[2].count(",") ==16 or called.items[2].count(",") ==25:
lorans.append(called.items[0])
wei = lratios[called.items[2]] if called.items[2] in lratios else called.items[2]
multiple = called.items[1]
ratios = [w for w in wei.split(",")]
for i,r in enumerate(ratios):
if r =="R":
ratios[i] = round(random.random(),3)
elif r == "U":
ratios[i] = round(random.uniform(-0.5,1.5),3)
else:
ratios[i] = float(r)
print(f"LoRA Block weight :{called.items[0]}: {ratios}")
if len(ratios)==17:
ratios = [ratios[0]] + [1] + ratios[1:3]+ [1] + ratios[3:5]+[1] + ratios[5:7]+[1,1,1] + [ratios[7]] + [1,1,1] + ratios[8:]
lorars.append(ratios)
if len(lorars) > 0: load_loras_blocks(lorans,lorars,multiple)
re_digits = re.compile(r"\d+")
re_unet_down_blocks = re.compile(r"lora_unet_down_blocks_(\d+)_attentions_(\d+)_(.+)")
re_unet_mid_blocks = re.compile(r"lora_unet_mid_block_attentions_(\d+)_(.+)")
re_unet_up_blocks = re.compile(r"lora_unet_up_blocks_(\d+)_attentions_(\d+)_(.+)")
re_unet_down_blocks_res = re.compile(r"lora_unet_down_blocks_(\d+)_resnets_(\d+)_(.+)")
re_unet_mid_blocks_res = re.compile(r"lora_unet_mid_block_resnets_(\d+)_(.+)")
re_unet_up_blocks_res = re.compile(r"lora_unet_up_blocks_(\d+)_resnets_(\d+)_(.+)")
re_unet_downsample = re.compile(r"lora_unet_down_blocks_(\d+)_downsamplers_0_conv(.+)")
re_unet_upsample = re.compile(r"lora_unet_up_blocks_(\d+)_upsamplers_0_conv(.+)")
re_text_block = re.compile(r"lora_te_text_model_encoder_layers_(\d+)_(.+)")
def convert_diffusers_name_to_compvis(key):
def match(match_list, regex):
r = re.match(regex, key)
if not r:
return False
match_list.clear()
match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()])
return True
m = []
if match(m, re_unet_down_blocks):
return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[1]}_1_{m[2]}"
if match(m, re_unet_mid_blocks):
return f"diffusion_model_middle_block_1_{m[1]}"
if match(m, re_unet_up_blocks):
return f"diffusion_model_output_blocks_{m[0] * 3 + m[1]}_1_{m[2]}"
if match(m, re_unet_down_blocks_res):
block = f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[1]}_0_"
if m[2].startswith('conv1'):
return f"{block}in_layers_2{m[2][len('conv1'):]}"
elif m[2].startswith('conv2'):
return f"{block}out_layers_3{m[2][len('conv2'):]}"
elif m[2].startswith('time_emb_proj'):
return f"{block}emb_layers_1{m[2][len('time_emb_proj'):]}"
elif m[2].startswith('conv_shortcut'):
return f"{block}skip_connection{m[2][len('conv_shortcut'):]}"
if match(m, re_unet_mid_blocks_res):
block = f"diffusion_model_middle_block_{m[0]*2}_"
if m[1].startswith('conv1'):
return f"{block}in_layers_2{m[1][len('conv1'):]}"
elif m[1].startswith('conv2'):
return f"{block}out_layers_3{m[1][len('conv2'):]}"
elif m[1].startswith('time_emb_proj'):
return f"{block}emb_layers_1{m[1][len('time_emb_proj'):]}"
elif m[1].startswith('conv_shortcut'):
return f"{block}skip_connection{m[1][len('conv_shortcut'):]}"
if match(m, re_unet_up_blocks_res):
block = f"diffusion_model_output_blocks_{m[0] * 3 + m[1]}_0_"
if m[2].startswith('conv1'):
return f"{block}in_layers_2{m[2][len('conv1'):]}"
elif m[2].startswith('conv2'):
return f"{block}out_layers_3{m[2][len('conv2'):]}"
elif m[2].startswith('time_emb_proj'):
return f"{block}emb_layers_1{m[2][len('time_emb_proj'):]}"
elif m[2].startswith('conv_shortcut'):
return f"{block}skip_connection{m[2][len('conv_shortcut'):]}"
if match(m, re_unet_downsample):
return f"diffusion_model_input_blocks_{m[0]*3+3}_0_op{m[1]}"
if match(m, re_unet_upsample):
return f"diffusion_model_output_blocks_{m[0]*3 + 2}_{1+(m[0]!=0)}_conv{m[1]}"
if match(m, re_text_block):
return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}"
return key
class FakeModule(torch.nn.Module):
def __init__(self, weight, func):
super().__init__()
self.weight = weight
self.func = func
def forward(self, x):
return self.func(x)
class LoraUpDownModule:
def __init__(self):
self.up_model = None
self.mid_model = None
self.down_model = None
self.alpha = None
self.dim = None
self.op = None
self.extra_args = {}
self.shape = None
self.bias = None
self.up = None
def down(self, x):
return x
def inference(self, x):
if hasattr(self, 'bias') and isinstance(self.bias, torch.Tensor):
out_dim = self.up_model.weight.size(0)
rank = self.down_model.weight.size(0)
rebuild_weight = (
self.up_model.weight.reshape(out_dim, -1) @ self.down_model.weight.reshape(rank, -1)
+ self.bias
).reshape(self.shape)
return self.op(
x, rebuild_weight,
**self.extra_args
)
else:
if self.mid_model is None:
return self.up_model(self.down_model(x))
else:
return self.up_model(self.mid_model(self.down_model(x)))
def pro3(t, wa, wb):
temp = torch.einsum('i j k l, j r -> i r k l', t, wb)
return torch.einsum('i j k l, i r -> r j k l', temp, wa)
class LoraHadaModule:
def __init__(self):
self.t1 = None
self.w1a = None
self.w1b = None
self.t2 = None
self.w2a = None
self.w2b = None
self.alpha = None
self.dim = None
self.op = None
self.extra_args = {}
self.shape = None
self.bias = None
self.up = None
def down(self, x):
return x
def inference(self, x):
if hasattr(self, 'bias') and isinstance(self.bias, torch.Tensor):
bias = self.bias
else:
bias = 0
if self.t1 is None:
return self.op(
x,
((self.w1a @ self.w1b) * (self.w2a @ self.w2b) + bias).view(self.shape),
**self.extra_args
)
else:
return self.op(
x,
(pro3(self.t1, self.w1a, self.w1b)
* pro3(self.t2, self.w2a, self.w2b) + bias).view(self.shape),
**self.extra_args
)
CON_KEY = {
"lora_up.weight",
"lora_down.weight",
"lora_mid.weight"
}
HADA_KEY = {
"hada_t1",
"hada_w1_a",
"hada_w1_b",
"hada_t2",
"hada_w2_a",
"hada_w2_b",
}
def load_lora(name, filename,lwei):
import lora as lora_o
lora = lora_o.LoraModule(name)
lora.mtime = os.path.getmtime(filename)
sd = sd_models.read_state_dict(filename)
keys_failed_to_match = []
keys_failed_to_match_lbw = []
for key_diffusers, weight in sd.items():
ratio = 1
picked = False
fullkey = convert_diffusers_name_to_compvis(key_diffusers)
key, lora_key = fullkey.split(".", 1)
for i,block in enumerate(BLOCKS):
if block in key:
ratio = lwei[i]
picked = True
if not picked:keys_failed_to_match_lbw.append(key_diffusers)
weight = weight * math.sqrt(abs(ratio))
sd_module = shared.sd_model.lora_layer_mapping.get(key, None)
if sd_module is None:
keys_failed_to_match.append(key_diffusers)
continue
lora_module = lora.modules.get(key, None)
if lora_module is None:
lora_module = LoraUpDownModule()
lora.modules[key] = lora_module
if lora_key == "alpha":
lora_module.alpha = weight.item()
continue
if 'bias_' in lora_key:
if lora_module.bias is None:
lora_module.bias = [None, None, None]
if 'bias_indices' == lora_key:
lora_module.bias[0] = weight
elif 'bias_values' == lora_key:
lora_module.bias[1] = weight
elif 'bias_size' == lora_key:
lora_module.bias[2] = weight
if all((i is not None) for i in lora_module.bias):
print('build bias')
lora_module.bias = torch.sparse_coo_tensor(
lora_module.bias[0],
lora_module.bias[1],
tuple(lora_module.bias[2]),
).to(device=devices.device, dtype=devices.dtype)
lora_module.bias.requires_grad_(False)
continue
if lora_key in CON_KEY:
if type(sd_module) == torch.nn.Linear:
weight = weight.reshape(weight.shape[0], -1)
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
lora_module.op = torch.nn.functional.linear
elif type(sd_module) == torch.nn.Conv2d:
if lora_key == "lora_down.weight":
if weight.shape[2] != 1 or weight.shape[3] != 1:
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], sd_module.kernel_size, sd_module.stride, sd_module.padding, bias=False)
else:
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
elif lora_key == "lora_mid.weight":
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], sd_module.kernel_size, sd_module.stride, sd_module.padding, bias=False)
elif lora_key == "lora_up.weight":
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
lora_module.op = torch.nn.functional.conv2d
lora_module.extra_args = {
'stride': sd_module.stride,
'padding': sd_module.padding
}
else:
assert False, f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}'
lora_module.shape = sd_module.weight.shape
fugou = np.sign(ratio) if lora_key == "lora_up.weight" else 1
with torch.no_grad():
module.weight.copy_(weight*fugou)
module.to(device=devices.device, dtype=devices.dtype)
module.requires_grad_(False)
if lora_key == "lora_up.weight":
lora_module.up_model = module
lora_module.up = FakeModule(
lora_module.up_model.weight,
lora_module.inference
)
elif lora_key == "lora_mid.weight":
lora_module.mid_model = module
elif lora_key == "lora_down.weight":
lora_module.down_model = module
lora_module.dim = weight.shape[0]
elif lora_key in HADA_KEY:
if type(lora_module) != LoraHadaModule:
alpha = lora_module.alpha
bias = lora_module.bias
lora_module = LoraHadaModule()
lora_module.alpha = alpha
lora_module.bias = bias
lora.modules[key] = lora_module
lora_module.shape = sd_module.weight.shape
weight = weight.to(device=devices.device, dtype=devices.dtype)
weight.requires_grad_(False)
if lora_key == 'hada_w1_a':
lora_module.w1a = weight
if lora_module.up is None:
lora_module.up = FakeModule(
lora_module.w1a,
lora_module.inference
)
elif lora_key == 'hada_w1_b':
lora_module.w1b = weight
lora_module.dim = weight.shape[0]
elif lora_key == 'hada_w2_a':
lora_module.w2a = weight
elif lora_key == 'hada_w2_b':
lora_module.w2b = weight
elif lora_key == 'hada_t1':
lora_module.t1 = weight
lora_module.up = FakeModule(
lora_module.t1,
lora_module.inference
)
elif lora_key == 'hada_t2':
lora_module.t2 = weight
if type(sd_module) == torch.nn.Linear:
lora_module.op = torch.nn.functional.linear
elif type(sd_module) == torch.nn.Conv2d:
lora_module.op = torch.nn.functional.conv2d
lora_module.extra_args = {
'stride': sd_module.stride,
'padding': sd_module.padding
}
else:
assert False, f'Lora layer {key_diffusers} matched a layer with unsupported type: {type(sd_module).__name__}'
else:
assert False, f'Bad Lora layer name: {key_diffusers} - must end in lora_up.weight, lora_down.weight or alpha'
if len(keys_failed_to_match) > 0:
print(f"Failed to match keys when loading Lora {filename}: {keys_failed_to_match}")
if len(keys_failed_to_match_lbw) > 0:
print(f"Failed to match keys when loading Lora {filename}: {keys_failed_to_match_lbw}")
return lora
def load_loras_blocks(names, lwei=None,multi=1.0):
import lora
loras_on_disk = [lora.available_loras.get(name, None) for name in names]
if any([x is None for x in loras_on_disk]):
lora.list_available_loras()
loras_on_disk = [lora.available_loras.get(name, None) for name in names]
for i, name in enumerate(names):
locallora = None
lora_on_disk = loras_on_disk[i]
if lora_on_disk is not None:
if locallora is None or os.path.getmtime(lora_on_disk.filename) > locallora.mtime:
locallora = load_lora(name, lora_on_disk.filename,lwei[i])
if locallora is None:
print(f"Couldn't find Lora with name {name}")
continue
locallora.multiplier = multi
lora.loaded_loras.append(locallora)
def smakegrid(imgs,xs,ys,currentmodel,p):
ver_texts = [[images.GridAnnotation(y)] for y in ys]
hor_texts = [[images.GridAnnotation(x)] for x in xs]
w, h = imgs[0].size
grid = Image.new('RGB', size=(len(xs) * w, len(ys) * h), color='black')
for i, img in enumerate(imgs):
grid.paste(img, box=(i % len(xs) * w, i // len(xs) * h))
grid = images.draw_grid_annotations(grid,int(p.width), int(p.height), hor_texts, ver_texts)
grid = draw_origin(grid, currentmodel,w*len(xs),h*len(ys),w)
if opts.grid_save:
images.save_image(grid, opts.outdir_txt2img_grids, "xy_grid", extension=opts.grid_format, prompt=p.prompt, seed=p.seed, grid=True, p=p)
return grid
def draw_origin(grid, text,width,height,width_one):
grid_d= Image.new("RGB", (grid.width,grid.height), "white")
grid_d.paste(grid,(0,0))
def get_font(fontsize):
try:
return ImageFont.truetype(opts.font or Roboto, fontsize)
except Exception:
return ImageFont.truetype(Roboto, fontsize)
d= ImageDraw.Draw(grid_d)
color_active = (0, 0, 0)
fontsize = (width+height)//25
fnt = get_font(fontsize)
if grid.width != width_one:
while d.multiline_textsize(text, font=fnt)[0] > width_one*0.75 and fontsize > 0:
fontsize -=1
fnt = get_font(fontsize)
d.multiline_text((0,0), text, font=fnt, fill=color_active,align="center")
return grid_d
def newrun(p, *args):
script_index = args[0]
if args[0] ==0:
script = None
for obj in scripts.scripts_txt2img.alwayson_scripts:
if "lora_block_weight" in obj.filename:
script = obj
script_args = args[script.args_from:script.args_to]
else:
script = scripts.scripts_txt2img.selectable_scripts[script_index-1]
if script is None:
return None
script_args = args[script.args_from:script.args_to]
processed = script.run(p, *script_args)
shared.total_tqdm.clear()
return processed
def effectivechecker(imgs,ss,ls,diffcol,thresh,revxy):
diffs = []
outnum =[]
imgs[0],imgs[1] = imgs[1],imgs[0]
im1 = np.array(imgs[0])
for i in range(len(imgs)-1):
im2 = np.array(imgs[i+1])
abs_diff = cv2.absdiff(im2 , im1)
abs_diff_t = cv2.threshold(abs_diff, int(thresh), 255, cv2.THRESH_BINARY)[1]
res = abs_diff_t.astype(np.uint8)
percentage = (np.count_nonzero(res) * 100)/ res.size
if "white" in diffcol: abs_diff = cv2.bitwise_not(abs_diff)
outnum.append(percentage)
abs_diff = Image.fromarray(abs_diff)
diffs.append(abs_diff)
outs = []
for i in range(len(ls)):
ls[i] = ls[i] + "\n Diff : " + str(round(outnum[i],3)) + "%"
if not revxy:
for diff,img in zip(diffs,imgs[1:]):
outs.append(diff)
outs.append(img)
outs.append(imgs[0])
ss = ["diff",ss[0],"source"]
return outs,ss,ls
else:
outs = [imgs[0]]*len(diffs) + imgs[1:]+ diffs
ss = ["source",ss[0],"diff"]
return outs,ls,ss
|